
- 1 -

ORDPATHs: Insert-Friendly XML Node Labels

Patrick O’Neil, Elizabeth O’Neil1
University of Massachusetts Boston

{poneil, eoneil}@cs.umb.edu

1 Work of these authors was performed at Microsoft, while on
sabbatical from the University of Massachusetts at Boston.

Shankar Pal, Istvan Cseri, Gideon Schaller,
Nigel Westbury

Microsoft Corporation
{shankarp, istvanc,gideons}@microsoft.com

ABSTRACT
We introduce a hierarchical labeling scheme called
ORDPATH that is implemented in the upcoming
version of Microsoft® SQL Server™. ORDPATH
labels nodes of an XML tree without requiring a
schema (the most general case—a schema simplifies
the problem). An example of an ORDPATH value
display format is "1.5.3.9.1". A compressed binary
representation of ORDPATH provides document order
by simple byte-by-byte comparison and ancestry
relationship equally simply. In addition, the
ORDPATH scheme supports insertion of new nodes at
arbitrary positions in the XML tree, their ORDPATH
values "careted in" between ORDPATHs of sibling
nodes, without relabeling any old nodes.

1. INTRODUCTION
Relational database systems are now commonly used for
XML data storage and update [9], [8], [11]. Typically, an
XML document is "shredded" into rows of relational tables;
see our NODE table below, each row of which stores
information for an individual node in the XML tree.

Several node labeling schemes have been proposed in the
literature: [9] compares three schemes. Aside from its
efficient insertion and compression, ORDPATH is similar
conceptually to the Dewey Order described in [9]. While
previous schemes are adequate for the structure of static
XML data, insertion within a tree remains a challenging
issue. ORDPATH provides efficient insertion at any
position of an XML tree, and also supports extremely high-
performance query plans for native XML queries.

Structural modifications to the XML tree can occur in
several ways: new sub-trees may be inserted, sub-trees may

be deleted, and sub-trees may be moved around within the
tree. Even single node insertions can be very costly for
existing labeling schemes, requiring a large number of
nodes to be relabeled for each new node inserted.
ORDPATH encodes the parent-child relationship by
extending the parent’s ORDPATH label with a component
for the child. E.g.: 1.5.3.9 might be the parent ORDPATH,
1.5.3.9.1 the child. The various child components reflect
the children’s relative sibling order, so that byte-by-byte
comparison of the ORDPATH labels of two nodes yields
the proper document order.

A new node (possibly a root node of a sub-tree) can be
inserted under any designated parent node in an existing
tree. Its label is generated using an additional intermediate
“careting” component that falls between the components of
its left and right siblings. This is referred to as “careting in”.
Leftmost and rightmost insertion in a group of siblings is
even more efficiently supported by range extensibility of
component numbering on both ends. In all cases, a need for
relabeling is avoided.

2. MOTIVATING EXAMPLE
We define a relational table (see Figure 2.3), known as the
NODE table; a shredding transformation [2], [8], [9] will

<BOOK ISBN=”1-55860-438-3”>
<SECTION>

<TITLE> Bad Bugs</TITLE>
Nobody loves bad bugs.

<FIGURE CAPTION=”Sample bug”/>
</SECTION>
<SECTION>

<TITLE> Tree Frogs </TITLE>
All right-thinking people
<BOLD> love </BOLD> tree frogs.

</SECTION>
</BOOK>

Figure 2.1 Sample XML data
Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00

1.1

FIGURE TITLE BOLD

1

BOOK

TITLE

CAPTION

All right… tree frogs

1.5

1.3.1 1.3.5

1.3.5.1

1.5.1 1.5.3 1.5.5 1.5.7

Nobody …

1.3.3

SECTIONSECTION

1.3

ISBN

- 2 -

Figure 2.2 XML tree for XML data of Figure 2.1

ORDPATH TAG NODE TYPE VALUE

1. 1 (BOOK) 1 (Element) null
1.1 2 (ISBN) 2 (Attribute) '1-55860-438-3'
1.3 3 (SECTION) 1 (Element) null
1.3.1 4 (TITLE) 1 (Element) 'Bad Bugs'
1.3.3 -- 4 (Value) 'Nobody loves bad bugs.'
1.3.5 5 (FIGURE) 1 (Element) null
1.3.5.1 6 (CAPTION) 2 (Attribute) 'Sample bug'
1.5 3 (SECTION) 1 (Element) null
1.5.1 4 (TITLE) 1 (Element) 'Tree frogs'
1.5.3 -- 4 (Value) 'All right-thinking people'
1.5.5 7 (BOLD) 1 (Element) 'love '
1.5.7 -- 4 (Value) 'tree frogs'

Figure 2.3. XML “Shredded” into relational Node Table

transform all XML node data into rows of this table. In the
most general case, the XML data has no schema. XML data
and a tree representing the XML hierarchy are shown in
Figures 2.1 and 2.2, respectively, with the corresponding
NODE table shredded from Figure 2.1 shown in Figure 2.3.

Successive nodes of the XML tree in XML document order
are traversed during the initial load of the NODE table, and
the ORDPATH labels are generated at that time. In
ORDPATH values of Figure 2.3 (such as "1.3.5.1"), each
dot separated component value ("1", "3", "5", "1") reflects
a numbered tree edge at successive levels down the path
from the root (itself having a 0-length ORDPATH) to the
node represented. Note that only positive, odd integers are
assigned during an initial load; even-numbered and negative
integer component values are reserved for later insertions
into an existing tree, as explained below in Section 3.3.
ORDPATH values stored are not the dotted-decimal strings
displayed (“1.3.5.1”), but rather a compressed binary
representation defined in Section 3.3.

The NODE TYPE column of Figure 2.3 contains coded
values for various node types: 1 for an element, 2 for an
attribute, and so on. The TAG column contains coded tags.
The VALUE column contains variable-type data that is
associated with some nodes.

Primary Index. An ORDPATH primary key (with a
clustered index) on the NODE table provides efficient
query access to XML data. For example, a query that
retrieves all the descendents of X will find them clustered
on disk just after X, in ORDPATH order (i.e., document
order), so retrieval is optimal.

3. FUNDAMENTAL ORDPATH CONCEPTS
Figure 3.1 illustrates successive variable-length Li/Oi
bitstrings of the compressed ORDPATH format.

L0 O0 L1 O1 . . . Lk Ok

Figure 3.1 Compressed ORDPATH Format

In all Li/Oi component pairs of Figure 3.1, each Li bitstring
specifies the length in bits of the succeeding Oi bitstring. Li
bitstrings are represented using a form of prefix-free
encoding, defined in Section 3.1, to provide a number of
important properties, as follows. (1) given that we know
where an Li bitstring starts (as we do with L0), we can
identify where it stops; (2) each Li bitstring specifies the
length in bits of the succeeding Oi bitstring; (3) from (1)
and (2), we see how to parse all ORDPATH bitstrings, left
to right, into their Li/Oi components; (4) the Li bitstrings
are generated to maintain document order; (5) Li/Oi
components can specify negative ordinals Oi as well as
positive ones; negative ordinals support multiple inserts of
nodes to the left of a set of existing siblings.

3.1 Detailed Li/Oi Pair Design
Of the many possible prefix encoding schemes for Li
bitstrings, we examine two described in Figures 3.2a and
3.2b. In Figure 3.2a, the Li bitstring 01 identifies a
component Li/Oi encoding with assigned length Li = 3,
indicating a 3-bit Oi bitstring. The following Oi bitstrings
(000, 001, 010, . . ., 111) represent Oi values of the first
eight integers, (0, 1, 2, . . ., 7). Thus 01101 is the bitstring
for ORDPATH “5”. In the next row in Figure 3.2a, bitstring
100 identifies an encoding with Li = 4 and the 4-bit Oi
bitstrings that follow represent the range [8, 23]; in
particular, Oi = 8 is represented by bitstring 0000, 9 by
bitstring 0001,…, up to 23 by bitstring 1111. Similarly, Oi
in the range [-8, -1] is associated with the Li bitstring 001,
with -8 represented by the lowest bitstring, 000.

Example 3.1. Using Li values of Figure 3.2a, we would
generate ORDPATH = "1.5.3.-9.11" as follows:

01 001 01 101 01 011 00011 1111 100 0011
L0=3 O0=1 L1=3 O1=5 L2=3 O2=3 L3=4 O3=-9 L4=4 O4=11

Of course there are no actual spaces in the ORDPATH bit
pattern; spaces have been added for ease of reading. Using
the Li values of Figure 3.2b (note that the Li bitstring 01
requires Oi of length 0 to represent 1), we would have the
following for "1.5.3.-9.11":

01 110 01 10 1 00001 1100 1110 0011
L0=0 (O0=1) L1=2 O1=5 L2=1 O2=3 L3=4 O3=-9 L4=3 O4=11

After an initial load, we can label a newly inserted node to
the right of all existing children of a node by adding two to
the last ordinal of the last child, coding Li and Oi as
needed. We can insert new children of the node on the left
of all existing children by adding -2 to the last ordinal of the
first child, using negative ordinal values when needed.

- 3 -

We will describe in Section 3.3 how to “caret in” a node
between any two existing children, using even ordinals.

In Figure 3.2a, all Li values are shown sitting at the leaves
of a binary tree. The 0-1 encoding of each Li is determined
by the path through the tree from the root to a leaf: a 0 bit is
used for each tree edge going up, and 1 bit for each edge
going down. A similar binary tree could be constructed for
the more regular set of values of Figure 3.2b.

Deriving each Li bitstring from 0-1 paths through a binary
tree clearly provides a prefix free encoding, i.e., no Li
bitstring can be a prefix of another Li bitstring. We always
know when a particular Li bitstring ends by following the 0-
1 path through the tree until a leaf is reached. At that point
the length of the subsequent Oi bitstring value is known
from the identified Li bitstring, so the entire sequence of
bits that make up the Li/Oi component pairs of an
ORDPATH of Figure 3.1 can be parsed.

3.2 Comparing ORDPATH Values
The prefix tree representing any Li can be concatenated,
leaf to root, with simple n-way trees for each set of Oi
bitstrings to make a larger prefix tree representing all
bitstring values for one-component ORDPATHs.
Furthermore, two-component ORDPATHs correspond to a
larger prefix tree of leaf-to-root connected one-component
prefix trees, and so on. This construction orders all possible
ORDPATHs as binary strings, and preserves document
order. Thus simple bitstring (or byte by byte) comparison
yields document order.

We can also determine ancestor-descendent relationships
between any two ORDPATHs X and Y. If X is a strict
substring of Y or vice versa, there is an ancestry
relationship. The part that is longer can be parsed (using the
prefix-free property) to find how far apart they are (parent,
grandparent, etc.)

3.3 Arbitrary ORDPATH Insertions
We have shown how to insert new nodes to the right of all
existing children of any node, or on the left of all children.
For the remaining case, we can insert a new node Y
between any two siblings of a parent node X (known as
careting in) by creating a component with an even ordinal
falling between the final (odd) ordinals of the two siblings,
then following this with a new odd component, usually 1.

Indeed we can caret in a sequence of K siblings with parent
node having ORDPATH 3.5, the sequence to fall between
sibling nodes 3.5.5 and 3.5.7, by providing the new siblings
with the even caret 6: 3.5.6.1, 3.5.6.3, 3.5.6.5, The
value 6 in component 3 (or any even value in any non-
terminal component) represents a caret only, that is, it
doesn't count as a component that increases the depth of the
node in the tree. However the caret does have an effect on
ORDPATH order, since comparisons of Section 3.2 give
3.5.5 < 3.5.6.1, 3.5.6.3, 3.5.6.5 < 3.5.7. Using this approach
we can caret in entire sub-trees falling between the sibling
nodes 3.5.5 and 3.5.7, using only the one even ordinal
between 5 and 7. For example: 3.5.6.1, 3.5.6.1.1, 3.5.6.3,
3.5.6.3.1, 3.5.6.3.3, 3.5.6.3.3.1, 3.5.6.3.3.3, 3.5.6.3.5,
3.5.6.5, 3.5.6.5.1, etc. The siblings of 3.5.5 and 3.5.7 are

Figure 3.2. Two Tables of Lengths Li with Oi Ranges Represented

Figure 2.2a

1

1

1

0

1

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0 [4440, 69975]1611100

[69976, 4.3x109]3211101

[4.3x109, 2.8x1014]4811110

Oi value rangeLiBitstring

12

8

6

4

3

3

4

6

8

12

16

32

48

[344, 4439]1101

[88, 343]1100

[24, 87]101

[8, 23]100

[0, 7]01

[-8, -1]001

[-24, -9]00011

[-88, -25]00010

[-344, -89]000011

[-4440, -345]000010

[-69976, -4441]0000011

[-4.3x109, -69977]0000010

[-2.8x1014,-4.3x109]0000001

[-1118485, -69910]20000000001

[280, 4375]12111110

[4376, 69911]161111110

[69912, 1118487]2011111110

Oi value rangeLiBitstring

8

4

2

1

0

1

2

4

8

12

16

[24, 279]11110

[8, 23]1110

[4, 7]110

[2, 3]10

[1, 1]01

[-1, 0]001

[-5, -2]0001

[-21, -6]00001

[-277, -22]000001

[-4373, -278]0000001

[-69909, -4374]00000001

Figure 3.2a Figure 3.2b

- 4 -

underlined in this example, and the other nodes in the
document order sequence are descendents of the siblings.

In interpreting an ORDPATH, the even components
(carets) simply don’t count for ancestry: 3.5.6.2.1 is a child
of 3.5, and a grandchild of 3. Note that the construction
ensures that all node labels end in an odd component. That
means that the very last bit of a node label is always on,
signaling the end of the bitstring in the last byte of a (zero-
padded) byte string. This property allows the bit length to
be determined from the byte length and the final byte of the
ORDPATH.

New insertions can always be careted in between any two
existing sibling nodes. For example, we can insert a node
between 3.5.6.1 and 3.5.6.2.1 by using 3.5.6.2.-1.

Multiple levels of carets are normally extremely rare in
practice. In order for K carets to exist in an ORDPATH,
there must have been a decision at some point to perform an
insert of a multiple node sub-tree (in text XML, this might
be adding an intermediate section of a book), then there
must have been a decision to add another multiple node
sub-tree within the first (adding a new intermediate
paragraph within the new section), and another within that
(adding a new intermediate sentence within that paragraph),
and so on, for K successive multiple node sub-tree
additions, one within another, not at either end. Clearly this
is a rarity.

The fact that insertions require no relabelings of old nodes
is extremely important to insert performance and possible
concurrency of operations. With Dewey Order [9], all
right-side siblings and their descendents must be relabeled.
These are updates to the primary key values, a particularly
costly operation involving the primary index and all
secondary indexes. With global numbering [9], all nodes of
higher number must be renumbered, and end-descendent ids
must be changed for the root node and many other nodes
outside the set of renumbered nodes.

3.4 ORDPATH Primitives
We describe primitive functions to determine the parent and
an upper bound on all descendents of a given node

(1) ORDPATH PARENT(ORDPATH X). The ORDPATH
of the parent of X has the rightmost component of X
removed (always an odd ordinal) and then all rightmost
even ordinal components.

(2) ORDPATH GRDESC(ORDPATH X). To derive the
smallest ORDPATH-like value greater than any descendent
of a node with ORDPATH X, we increment the last ordinal
component of X (an odd ordinal) to generate the next
(even) ordinal and return this value as Y. The value Y is not
a valid node-label because its last ordinal component is
even; however it has the right format for comparison with

descendents of X; the value Y is never used to label nodes
without an additional odd component affixed.

3.5 ORDPATH Query Plans
3.5.1 Secondary Indexes
We now list the most important secondary indexes. The
primary index by ORDPATH identifier has already been
discussed at the end of Section 2.

• Element and Attribute TAG (its integer id) index,
supporting fast look up of elements and attributes by
name.

• Element and Attribute VALUE index.

See Section 3.5.2 for examples of use. Naturally there is a
concern about the length of ORDPATHs in indexes. Note
that the primary key index contains the rows themselves, so
the length of the key is not the only contributor to relevant
length. In the secondary indexes, the key length is more
significant.

3.5.2 Query Plans
We now illustrate how efficient query plans for XML
queries can be generated using the primary key ORDPATH
on the relational NODE table. Consider the following
XPath ancestor/descendent query:

[3.1] //Book//Publisher[. = "Random House"]

In general, descendent connections between node sets that
are independently described may be treated as joins. In
query [3.1] three techniques suggest themselves. If the
number of descendent nodes below any Book element is
small and likely to fall on the same disk page, one could
retrieve the set of all Book elements (using the index on the
TAG column of Section 3.5.1) and then explore all
descendants; we can do this by treating each Book element
as a node with ORDPATH X, by exploring the range of
ORDPATHs from X to GRDESC(X) (see primitive (2) of
Section 3.4).

Alternatively, if there are a great many descendents of each
Book node, we might wish to separately locate the sequence
of Book elements and the sequence of Publisher elements
that have "Random House" as a value (using an index on
VALUE of Section 3.5.1), then merge join the two
sequences. Both node sequences will be in increasing order
of ORDPATH values, since each of them is located by a
single value in an index; furthermore, a merge join by
ancestor//descendent can be treated in much the same way
as an equal-match join (see [11]).

Finally, if the number of descendent elements is extremely
small, we might wish to start at the descendent and look for
a Book element ancestor. Successive applications of the
elementary PARENT() primitive of Section 3.4 allows us

- 5 -

to locate all ancestors efficiently, although testing whether
they are Book elements might be costly.

ORDPATH, together with a secondary index on LEVEL (of
the node tree) provide efficient means to locate nodes on all
XPATH axes of hierarchy and precedence, including axes
such as sibling. Efficient ORDPATH query plans use
relational primitives, extended by a few functions accessing
the implicit information in the ORDPATH labeling values.

4. ORDPATH Length
We wish to demonstrate that large XML trees can normally
be represented with ORDPATHs that are reasonable in
length, an important consideration for a primary key. For
any compressed-path representation, the worst cases of
(simple) trees are the ones of small fan-out at each level.
Let us construct a "random" binary XML tree by inserting n
elements at random into an empty binary search tree (with
no rebalancing taking place). In [1], Section 4.2, it is stated
that the average depth P(n) of such a tree obeys the
inequality.

[4.1] P(n) ≤ 1 + 1.4·log2n

Transposition gives the new inequality:

[4.2] n ≥ 2(P(n) - 1)/1.4

The average ORDPATH string length of an XML tree
loaded from such a binary tree can be calculated from the
average depth P(n) by determining the number of bits at
each component level. Such a binary tree will have ordinal
values at each level of 1 and 3. Using the encoding of
Figure 3.2b, the Li will be 01 or 10 at each level and Oi will
have 0 or 1 bit, respectively, so there will be a total of at
most 3·P(n) bits. If we allow a 20-byte ORDPATH, it will
consist of 160 bits of components, which will hold P(n) =
53 3-bit components. Using inequality [4.2], this will
support an average binary tree having 2(53-1)/1.4 = 1.4x1011 =

= 140G nodes.

XML trees will normally have larger average fan-out than
binary, and this will normally imply many more nodes for a
tree having the same number of components. For example,
a fan-out of 4 can be represented by 5-bit components using
either of the encoding schemes in Figure 3.2a or 3.2b (Oi

will have values 1, 3, 5, and 7 in this case), and a 20-byte
ORDPATH will represent about 1.84 x1019 nodes for this
4-fan-out tree. If binary fan-out is very common with the
XML trees of interest, one should use the encoding of the
Li/Oi components given in Figure 3.2b (which has 3 bits per
component in a binary situation, compared to 5 bits in
Figure 3.2a); if a high fan-out (say 50) is very common, the
encoding of Figure 3.2b requires 13 bits per component,
whereas the encoding of Figure 3.2a only requires 9 bits per
component. One can generate a large number of encoding
schemes to choose from with our Li/Oi scheme, and it seems

possible to base the scheme on statistics of trees for a given
application.

5. Length Measurement Studies
A study [5] that gathered statistics on 190,417 XML trees
worldwide found a maximum depth of 135. Examining the
source of the deepest tree in this study, however (at URL
http://edgarscan.pwcglobal.com/servlets/accession/0000950
123-01-505010.xml), showed the document was translated
erroneously from html to give a long succession of <page>
elements, each a child of the one before; there is a closing
sequence of </page> tags at the end of the document.

In [5], 99% of the documents have less than 8 levels, i.e.
less than depth 8. Almost all of the remaining 1% has depth
between 8 and 30. Only a smattering of the documents has
more than 30 levels. Further, there are rough power-law
dependencies for the number of children per element that
show how statistically rare the high fan-out cases are, at
least in this collection. In such an environment, we should
avoid jumping from 16 to 32 bits of Oi representation in our
Li definitions of Figure 3.2, as in Figure 3.2a, but rather
proceed by smaller steps: bitlengths of 12, then 16, then 20,
as done in Figure 3.2b. The big jump is good if the typical
Oi is expected to be anywhere in the Oi range, but if it is
highly probable to be at the lower end of the range, the
smaller jump is better. This line of reasoning was prompted
by length statistics of Timo Böhme and Erhard Rahm
(private communication.)

We ran a prototype experiment to measure ORDPATH
length (using the encoding in Figure 3.2a) in two well
known cases. For the XMark benchmark [7], which models
an auction scenario, we used scale 0.1 and generated an
XML instance of length 10MB with 325755 XML nodes.
The maximum and average ORDPATH lengths were 12
and 6 bytes, respectively. For the XMach-1 benchmark [6],
which models a document management scenario, we
created 1000 documents conforming to XMACH-1 DTDs.
Document sizes ranged from 0.9KB to 120KB with average
size 16KB. Maximum ORDPATH length was 15 bytes with
the average of 4 bytes. Thus, the average and maximum
ORDPATH lengths are quite small even for large amounts
of data.

6. Insert-Friendly IDs for Global Numbering
If deep XML trees should appear in practice, we can save
most of the label bitlength by using labels that do not reflect
ancestry. The technique of “careting-in” used in
ORDPATH can still be used for global numbering, that is,
identifiers that maintain document order but do not contain
path information.

To assign such labels, we pass through the XML tree in
document order and generate single-component L0/O0 pairs
with ordinal values 1, 3, 5, . . . for all nodes, regardless of

- 6 -

ancestry. Later insertions within the tree can then use the
standard method of ORDPATH careting-in, creating an
even-numbered ordinal component (say 4) for two-
component identifiers in proper document order; successive
nodes inserted in document order receive 4.1, 4.3, 4.5,
As usual, repetitively inserting subtrees within subtrees will
result in multiple even-Oi components.

The resulting identifier is quite short under most
circumstances (a single L0/O0 component), and it can be the
primary key in the relational Node table of Figure 2.3 to
ensure that rows are clustered in document order. We now
consider how to represent ancestry information. One
method adds an ORDPATH column to the Node table and
creates a secondary index on it. For certain query classes
this can lead to multiple accesses to rows in the Node table
that are not needed when ORDPATH is the primary key,
leading to relatively inefficient queries. In another method,
as in the global numbering case treated in [9], every node is
assigned a corresponding end-descendent (ED) id. The
range of descendent ids lies between the reference node id
and its ED. Then an insert of a node N requires changes to
all the ED values for ancestors X where N lies on the
rightmost descendent path.

7. Literature Review and Observations
In [9], three labeling schemes for XML trees are considered
that encode document order: Global order, Local Order,
which labels children of each node with integers starting
from 1, and Dewey Order, which is comparable to
ORDPATH (with Dewey paths like 1.2.1.1 for example).
The Dewey order provides byte string comparisons via
UTF-8 encoding [9] for each component of the path.
Compression is poor for small ordinals, e.g. 1.2.1.1 uses
four one-byte components, compared to four 3-bit
components in Figure 3.2b or four 5-bit components in
Figure 3.2a. On the other hand, 50.50.50.50 also uses four
one-byte components in UTF-8, vs. four 9-bit components
from Figure 3.2a. The major drawback of UTF-8, then, is
its inflexibility. Further, our concept of "careting" inserts in
the middle of a sequence of siblings in ORDPATHs is
missing, so the need to relabel large numbers of nodes is a
serious problem when updates occur.

In [4], each node x is marked by node type and labeled with
two numberings, preorder (pre(x)) and postorder (post(x)),
together with a parent identifier. From this information, all
XPath axes (descendent, ancestor, following and preceding,
parent, child, next sibling, prior sibling, etc.) can be
determined relative to an arbitrary context node. The
authors state that it is necessary to update all node labels in
the following set of nodes and ancestor axes of a newly
inserted node. But using ids with caret-in capability appears
to provide easier inserts with short average length ids.

In [3], important theoretical results are derived for bounds
on lengths of Ancestor Class (i.e. path-based) labelings,
where no sibling order is maintained; this is equivalent to
always allowing inserts of new nodes on the end of a sibling
list. Indeed, our inequality [4.1] is derived in this paper:
that for trees with maximum depth d and maximum out-
degree t, the maximum bitlength length L of labels that are
optimally assigned is bounded by: d·log2t - 1 ≤ L ≤ 4d·log2t.
This bound, which is linear in depth, is for dynamic trees,
where new nodes can be inserted at random.

REFERENCES

[1] A. Aho, J. Hopcroft, J. Ullman, Data Structures and
Algorithms, Addison-Wesley 1983.

[2] P. Bohannon, J. Freire, P. Roy, J. Simeon. From XML
Schema to Relations: A Cost-Based Approach to XML
Storage. ICDE 2002.

[3] E. Cohen, H. Kaplan, T. Milo. Labeling Dynamic XML.
PODS 2002.

[4] T. Grust. Accelerating XPath Location Steps. SIGMOD 2002

[5] L. Mignet, D. Barbosa, P. Veltri. The XML Web, A First
Study. Proc. 12th Intl.WWW Conference, Budapest, 2003.
http://www.cs.toronto.edu/~mignet/Publications/www2003.pdf

[6] E. Rahm., T. Böhme: XMach-1: A Multi-User Benchmark
for XML Data Management. Proc. VLDB workshop
Efficiency and Effectiveness of XML Tools, and Techniques
(EEXTT2002), Hong Kong, August 2002.

[7] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I.
Manolescu, R. Busse. XMark: A Benchmark for XML Data
Management. Proc. VLDB, Hong Kong, August 2002.

[8] J. Shanmugasundaram, R. Krishnamurthy, I. Tatarinov. A
General Technique for Querying XML Documents using a
Relational Database System, SIGMOD 2001.

[9] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E.
Shekita, C. Zhang. Storing and Querying Ordered XML
Using a Relational Database System. SIGMOD 2002.

[10] F. Yergeau, UTF-8, A Transformation Format of ISO 10646.
Request for Comments 2279, January 1998.

[11] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman. On
Supporting Containment Queries in Relational Database
Management Systems. SIGMOD 2001.

