Technical Report
KN-2010-DiSy—-01

Distributed Systems Group
Database & Information Systems
Group

JAX-RX

Unified REST Access to XML Resources

Sebastian Graf, Lukas Lewandowski and
Christian Grun

Distributed Systems Laboratory and
Database & Information Systems Group

Department of Computer and Information Science
University of Konstanz — Germany

Konstanze©Online-Publikations-Syste(KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-12051
URL: http://kops.ub.uni-konstanz.de/volltexte/2010/120511

http://kops.ub.uni-konstanz.de/volltexte/2010/120511
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-12051

REST nowadays represents, besides SOAP, one common way to access dis-
tributed resources in a web-affine manner. While SOAP can be easily utilized
by high-level programming languages like Java (e.g. JAX-WS as one common
standardized way), REST catches up regarding straight usages (e.g JAX-RS
regarding Java).

With the clean and direct usage of JAX-RS, common layers for standard-
ised access on heterogeneous XML-resources can be defined. This is what the
project JAX-RX stands for: Based on XML as modern resource in the WIWW,
we defined a common application programming interface to access Java enabled
XML resource easily in a common way. Using a common architecture for the
uniform resource locator on the one hand and defining suitable interfaces on the
other hand, every XML generating resources can be “RESTified“ with nearly no
effort. This technical report describes the motivation, the architecture and the
usage of our XML-enabling API called JAX-RX.

Introduction 1

1 Introduction

REST [1] has emerged to a de facto standard access interface to distributed
resources, especially in the realm of web applications. Based on the observation
that states are very difficult to handle in distributed environments, REST repre-
sents a paradigm where no states are handled at all: Each request is encapsulated
and valid by itself and each resource is directly addressed. Many popular and
widely used environments apply REST to read and write remote and distributed
data sources.

To make direct use of this paradigm within Java environments, JAX-RS [2]
was introduced. JAX-RS simplifies and unifies the task of parsing the URL, in
which the request to a specific resource is encapsulated, and offers an elegant
way to access resources without checking substrings and handling requests. This
is realized by implementing a JAX-RS interface and annotating methods and
parameters. Thereby, the annotations are directly related to the URL of the
REST request.

Since XML is a core technology for web-based applications, we want to mo-
tivate a common interface layer for XML-based resources accessible over REST.
The clean architecture of JAX-RS allows us to build an interface for uniform
access to distributed resources. This approach, which we call JAX-RX (Java
API for RESTful XML resources), enables third party applications to be acces-
sible over a platform independent, up-to-date interface layer. To demonstrate
the ease of use of our thin layer, we are offering implementations for existing
XML databases.

Furthermore, JAX-RX allows for the retrieval of WADL [3] descriptions,
based on the JAX-RS reference implementation Jersey [2]. WADL is a complete
XML-based description of all RESTful Web Services that we offer within our
REST layer. Two alternatives exist to retrieve the WADL description:

1. A GET request can be sent to a standardized URL:
http://ADDRESS/application.wadl

This will return a description of all available URL resources with their cor-
responding offered services.

2. an OPTIONS request can be sent to the relevant URL resource, which will
return the WADL description for the requested URL.

Our WADL description contains information on the offered resources, such as
the URL, HTTP request type (GET, PUT, POST, and DELETE), path param-
eters, URL query parameters, request and response media type (e.g. text/xml),
all based on the underlying implementation. More to that, clients can generate
appropriate stubs out of this WADL description, similar to WSDL [4] in SOAP-
based Web Services scenarios [5], (example generator tool: wadl-cmdline [3]) to
speed up the implementation of the client/server interaction.

http://ADDRESS/application.wadl

2 JAX-RX

2 JAX-RX

We present JAX-RX, an interface project which provides a unified access to XML
resources within Java-based REST applications. Inspired by the URL syntax
of eXist [6], a well-known XML database which already supports REST, we
developed an extensible framework to provide access to XML on the one hand
without restricting functionality of the resource on the other hand.

2.1 URL architecture

The common architecture of the URL is one main aspect of JAX-RX. All URLs
which rely on JAX-RX-enabled resources have the following layout:

http: //SERVER/IMPLEMENTATION/j ax-rx/RESOURCE (/NODE) 7PARAM1=VALUE1%. ..
The extensions for the different REST methods are defined as follows:

1. The GET and POST methods allow users to directly specify parameters in
the target URL. A GET or POST request comprises the following list of
optional parameters:

— query Query expression (XPath [7]/XQuery|[8])

— xsl Transformation via XSLT stylesheet

— output XSLT/XQuery serialization options [9] (separated by commas)

— count Number of items to be returned (default: all)

— start Index position of the return values (default: 1)

— wrap Resulting wrapping by additional elements (default: yes)

— revision Revision of the data

— command Implementation-dependent database command

If a GET request does not refer to a specific XML resource, JAX-RX re-
turns a standardized output. The output lists descendant access paths and
parameters which are supported by the underlying system.

2. A DELETE request is removing a resource. The resource itself can be a
database, a collection or resource within a database or, if supported, a di-
rectly accessible node. No additional parameters are allowed in the DELETE
method: Only those resources can be removed which can be referenced by
the path. More complex delete operations on a database are performed via
XQuery Update or the update language extensions of a specific database.

3. A PUT request adds new content to the addressed resource. Similar to the
DELETE method, PUT is parameter free. Again, XQuery Update can be
utilized to perform more complex update operations.

An XML schema defines the structure for the POST request. If the wrap param-
eter was specified in a query, the results are embraced by additional elements.
Systems may implement additional information for the returning nodes, such as
unique node or result identifiers.

Summarizing, the proposed syntax offers a convenient way to communicate
with XML databases and facilitates a system-independent access to remote XML
resources. Apart from the uniform access of external resources, however, a major
objective of JAX-RX is to allow for easy, server-side REST implementations.

http://SERVER/IMPLEMENTATION/jax-rx/RESOURCE(/NODE)?PARAM1=VALUE1&...

JAX-RX 3

2.2 Interface project

Unified access is not limited to the URL syntax. Based on JAX-RS [2], we provide
a set of interfaces for XML databases and query processors. To offer a JAX-RX
implementation, an implementor has to comply with the following requirements:

1. JAX-RX interface, which holds methods for each REST method, has to be
implemented. The interface is located in org.jazrz. JarRz

2. The implementing classes must be kept in a single folder, which is referenced
by a system property. The key of this property is denoted by
jaxrx.implementation.

Matching these requirements, JAX-RX can be used with the standard Jersey-
Servlet [2] by denoting the JAX-RX resource package. Upcoming HTTP requests
are evaluated with the help of two resource classes, which are both JAX-RS
enabled:

— org.jaxrx.resource.JaxRxResource This resource is processing system-
independent requests, such as HTTP operations based on the host or the
system itself. All parts of the URL, which are not accessing an XML resource,
are evaluated with the help of this class.

— org.jaxrx.resource. XMLResource The other resource is related to the
XML documents. Since such resources need to call the implementing system,
suitable classes which are implementing the necessary interface are searched
in the package which is referenced over the system variable
org.jaxrz.implementation. The name of the system must equal the one en-
capsulated in the HT'TP request. The classes are loaded once in a runtime
of the servlet.

Both resources act as the central place for incoming requests and outgoing
responses. They are validating the request and guarantee a standardized output
of the response. The validation takes place on different levels. First, the request
is validated against the JAX-RX specification. Additionally, the XML input of
POST requests is validated against the XSD schema. After a successful check,
the input is checked against the specifications of the implementing system. Using
the defined parameters, an implementing system can inform the client side on
the concrete subset of available parameters. If this check was successful as well,
the request is forwarded to the implementation of the related interface. After
evaluating the request, a response is returned to JAX-RX, processed to match
the JAX-RX return value specification if necessary and returned to the client.

This results in a clean interface structure with the following benefits:

— With org.jazrz.resource, one central package is handling all requests. In this
package, all classes are JAX-RS enabled. All requests are parsed and re-
sponses are returned. That means that only one resource package is set in
the Jersey servlet.

— By default, JAX-RX comes with a Java DOM [10] implementation. This
implementation serves as an example and allows for a quick start, since no
additional implementation is needed to try out JAX-RX.

4 Example Workflows

— Any external resources can be accessed as long as the resource is implement-
ing the requested interface and the implementing classes are located in a
package, which is referenced by the system property org.jazxrz.implementation.

— No resource needs to be aware of web services. With JAX-RX, all servlet

technology is encapsulated in JAX-RX itself. JAX-RX is released as a Maven [11]

project to speed up the integration in existing XML databases.

3 Example Workflows

Below, we give five examples for the usage of JAX-RX. The examples are based
on BaseX [12] and Treetank [13], two native XML database systems which are
being developed at the University of Konstanz:

GET:

Return all city elements with the name Panama from the factbook
resource, stored in TreeTank

GET Request on

http://localhost/treetank/jax-rx/factbook?query=//city[name=’Panama’]

Response:
HTTP/1.1 200 OK Content-Type: text/xml Server: Jetty(6.1.21)

Listing 1. GET Response of resource “city="Panama’*

<jax-rx:result xmlns:jax-rx="http://jax-rx.sourceforge.net">
<city id="£f0_1936" country="£f0_908" province="f0_19646"
longitude="-79.55" latitude="8.96667">
<name >Panama </name >
<name >Panama City</name>
<population year="90">594800</population>
<located_at type="sea" water="f0_38596"/>
</city>
</jax-rx:result>

PUT: Insert the specified XML document into the books resource,
stored in BaseX
PUT Request on

http://localhost/basex/jax-rx/books

Listing 2. PUT Request of resource “books“

<books>
<book>
<name>Effective Java</name>
<author >Joshua Bloch</author>
</book>
</books>

Response:
HTTP/1.1 201 CREATED Content-Length: 0 Server: Jetty(6.1.21)

http://localhost/treetank/jax-rx/factbook?query=//city[name='Panama']
http://localhost/basex/jax-rx/books

Example Workflows 5

DELETE: Delete a node with id 469 from the factbook resource,
stored in TreeTank
DELETE-Request on

http://localhost/treetank/jax-rx/factbook/469

Response:
HTTP/1.1 200 OK Content-Length: 0 Server: Jetty(6.1.21)

POST: Perform an XQuery Update expression on the books resource,
stored in BaseX
POST-Request on

http://localhost/basex/jax-rx/books

Listing 3. POST Request on resource “books*

<query xmlns="http://jax-rx.sourceforge.net">
<text>
<!'[CDATA[insert node
<book>
<name >RESTful Web Services</name>
<author >Leonard Richardson</author>
<author>Sam Ruby</author>
</book> as last into /books]]l>
</text>
</query>

Response:
HTTP/1.1 200 OK Content-Length: 0 Server: Jetty(6.1.21)

POST: Return all books with Sam Ruby as author from the books
resource, stored in BaseX
POST-Request on

http://localhost/basex/jax-rx/books

Listing 4. POST Request to get from the “books“resource

<query xmlns="http://jax-rx.sourceforge.net">
<text>
for $x in /books/book where $x/author=’Sam Ruby’ return $x
</text>
</query>

Response:

Listing 5. Post Response from resource “books*

<jax-rx:result xmlns:jax-rx="http://jax-rx.sourceforge.net">
<book>
<name>RESTful Web Services</name>
<author >Leonard Richardson</author>
<author>Sam Ruby</author>
</book>
</jax-rx:result>

http://localhost/treetank/jax-rx/factbook/469
http://localhost/basex/jax-rx/books´
http://localhost/basex/jax-rx/books

6 Conclusion and Future Work

4 Conclusion and Future Work

JAX-RX has been released as an early beta on Sourceforge [14]. We want to
encourage users to give feedback in our interface layer at the earliest moment
possible. Apart from implementations for the XML databases BaseX and Tree-
Tank, we ship JAX-RX with a reference implementation for Java DOM [10],
which allows implementors to quickly get in touch with JAX-RX. In near fu-
ture, we plan to add an eXist implementation in our interface framework.

JAX-RX offers numerous incentives for future work. We are investigating
the option of building a persistence layer on top of JAX-RX for XML resources,
similar to Hibernate [15]. This would allow us to further push XML as a core web
technology, not only when we talk about data exchange. Secondly, we will use
JAX-RX as a base for a distribution framework, which will allow a distributed
and secure handling of various XML resources in different systems. JAX-RX
will soon offer authentication and authorization methods for user management
operations as well as encryption support.

We believe that JAX-RX is a mandatory step to uniformly access remote
and distributed XML resources. Current API layers for XML resources are often
based on the implementation framework itself. Focusing a major Java use case
the development and implementation of web applications we feel the need for a
unified interface layer which offers a generic and light-weight access to distributed

XML resources. We definitely believe that we can fulfill these requirements with
JAX-RX.

References

[1] R. T. Fielding, “Architectural styles and the design of network-based soft-
ware architectures,” Ph.D. dissertation, University of California, Irvine,
2000, chair-Taylor, Richard N.

[2] M. Hadley and P. Sandoz, “JAX-RS: Java API for RESTful Web Services,”
Java Specification Request (JSR), vol. 311, 2009.

[3] T. Takase, S. Makino, S. Kawanaka, K. Ueno, C. Ferris, and A. Ryman,
“Definition Languages for RESTful Web Services: WADL vs. WSDL 2.0,”
IBM Reasearch, 2008.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web ser-
vices description language (WSDL) 1.1,” 2001.

[5] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, A. Kar-
markar, and Y. Lafon, “SOAP version 1.2 part 1: Messaging framework,”
2003.

[6] W. Meier, “eXist: An open source native XML database,” Web, Web-
Services, and Database Systems, pp. 169—-183, 2002.

[7] J. Clark, S. DeRose et al., “XML path language (XPath) version 1.0,” 1999.

[8] S. Boag, D. Chamberlin, M. Ferndndez, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu, “XQuery 1.0: An XML query language,” W3C working
draft, vol. 15, 2002.

References 7

[9] J. Clark et al., “XSL transformations (XSLT) version 1.0,” W3C' Recom-
mendation, vol. 16, no. 11, 1999.

[10] A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and
S. Byrne, “Document object model (DOM) level 3 core specification,” W3C
Recommendation, 2004.

[11] A. Maven, “Project Homepage.”

[12] C. Griin, A. Holupirek, and M. Scholl, “Visually Exploring and Querying
XML with BaseX,” in Proc. of the 12th GI-conference on Database Systems
in Business, Technology and Web (BTW), Aachen, Germany, 2007.

[13] S. Graf, “TreeTank, a native XML storage,” 2009.

[14] L. Lewandowski, S. Graf, and C. Griin. [Online]. Available: http:
/ /jax-rx.sourceforge.net /

[15] C. Bauer and G. King, Java Persistance with Hibernate. Dreamtech Press,
2006.

http://jax-rx.sourceforge.net/
http://jax-rx.sourceforge.net/

	Abstract.
	Introduction
	JAX-RX
	URL architecture
	Interface project

	Example Workflows
	Conclusion and Future Work
	References

	Text1: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-12051
URL: http://kops.ub.uni-konstanz.de/volltexte/2010/120511

