Melting Pot XML
Bringing File Systems and Databases One Step Closer

Alexander Holupirek, Christian Griin, Marc H. Scholl
Databases and Information Systems Group
University of Konstanz
<firstname>.<lastname>@uni-konstanz.de

Abstract: Ever-growing data volumes demand for storage systems beyond current file
systems abilities, particularly, a powerful querying capability. With the rise of XML,
the database community has been challenged by semi-structured data processing, en-
hancing their field of activity. Since file systems are structured hierarchically they can
be mapped to XML and as such stored in and queried by an XML-aware database. We
provide an evaluation of a state-of-the-art XML-aware database implementing a file
system.

1 Introduction

We generally face the fact that the amount of data stored in file systems on personal com-
puters is steadily growing. This comes as no real surprise since—against current opinion—
data gets copied from old machines to new ones instead of being curated, archived and
purged from the working system. This may be considered a bad habit, but it surely is a
side effect of storage capabilities increasing at low cost, and thus cannot be condemned.
Jim Gray et al. pointed out that a “decade ago, 100 GB was considered a huge database.
Today it is about 1/2 of a disk drive and is quite manageable. [...] so it is both economical
and desirable to bring the old data forward and store it on newer technology.” [GSTT02].
Hence file systems contain a significant amount of text documents, images, and multi-
media files. While the mere storage is an easy-to-manage task, convenient access to and
information retrieval from huge amounts of data is crucial to leverage the stored informa-
tion. Current file systems and their proven, but basic interface (VFS) support neither.

Challenge. Donald Norman coined the phrase “Attractive things work better” [Nor04].
While Norman’s statement in the first place aims at pushing aesthetics and attractiveness
into user interfaces, it suits well for any human-centered design approach. Without usabil-
ity, joy of use cannot evolve. Ease of use, on the other hand, is crucial and for a data storage
system it is determined by the ability to search/find and access/use stored data. In fact, the
challenge we face now (and will have to even more in the future) is to enhance storage
systems in a way that users can make full use of their data. Finding relevant content in this
ever growing amount of data is a major hassle. File systems still focus on mere storage
and tend to be conservative regarding feature enhancements [ZN0OO]. Consequently, they
do not offer solutions to this demanding task. A user’s demand, however, can be derived

from the popularity of industrial products such as Apple’s Spotlight or Google’s Desktop
Search. As these products make intensive use of database technology and since important
features (such as index structures or part of transaction management: journaling/recovery)
have already been ported from databases to modern file systems, it comes as no surprise
that leading researchers, like Jim Gray—speaking of a “file system/database détente” at
USENIX FAST 2005 [Gra05]—see both worlds colliding. In this paper we will evaluate
the potential of a state-of-the-art XML-aware database in the field of file system process-
ing.

Outline. We start with a discussion of related work. In Section 3 we will represent in-
formation contained in files and file systems in XML. As such it can be stored in and
retrieved by an XML-aware database. To actually operate on the file system representa-
tion, a mapping of commonly used file system operations to XPath/XQuery (Section 4) is
proposed. We have chosen X-Hive/DB as an evaluation candidate and will report about its
performance in Section 5. Since we found that it yields promising results we will discuss
our next steps towards merging file system and database technology and finally conclude.

2 Related Work

Various ideas have been proposed for including file contents into information systems.
One of the earliest attempts, the Semantic File System [GJSO91], extracted attribute-value
pairs for specific file types via so-called transducers. Content queries could be formulated
by entering directory paths and extending them with AND combined query terms. The re-
sult was a virtual path, resembling a default directory path and including symbolic links to
the result documents. While SFS offered only limited retrieval functionality and ways of
representing the query results, it has influenced numerous future file system projects, in-
cluding Shore [CDF94], HAC [GM99] or the recently discarded WinFS from Microsoft.

An interesting approach to bring XML and file systems together was presented by IBM’s
XMLFS [AFMMO02]. The underlying prototype implementation offered access to XML
documents via an NFS server, and a simple path language allowed querying tags and
text nodes across several documents. Nevertheless, the project was not extended to full
XPath/XQuery support, and document storage was apparently limited to XML instances.

IBM’s Virtual XML Garden [RMS06] and the draft of File System XML (FSX) [Wil06]
share the common idea to have a unified view over heterogenous data sources. Since
file systems are structured hierarchically they can easily be mapped to an XML structure
as sketched in [Wil06]. Together with the idea to let the file system immerse into the
file [Lau98], i.e., the internal structure of a file is no longer a black box to the system, but
is integrated in the generic view and can thus be used to navigate into the file itself, these
provide the basis for the construction of our test data.

iMeMex [Dit06] is, according to the authors, the first Personal DataSpace Management
System (PDSMS). It aims at providing a software platform to facilitate a heterogeneous
and distributed mix of personal information. Since “XML is not enough” [Dit06] to model
“the total of all personal information pertaining to a certain person” [Dit06], the creation

<?xml version="1.0"?2>

S tree /tmp/a @ <fsxml>

/tmp/a <dir root="/tmp/a">
|-—— b <dir name="b"/>

|-— ¢ o ° ° ° <dir name="c"/>
|—— d <dir name="d"/>

‘- e <dir name="e">
‘-- <dir name="f">
‘—— g o <dir name="g"/>
</dir>
6 directories, 0 files </dir>

</dir>
o </fsxml>

Figure 1: A simple directory tree. (left: file system representation, center: common tree structure,
right: naive XML mapping)

of an own iMeMex Data Model [DS06] is proposed. It copes with various data sources
and also the information contained in files and file systems can be expressed in a unified
way. Furthermore, a new search and query language is proposed. A publicly available
version of the iMeMex system was rescheduled for December 2006.

Position. Our long-term research project is focused on the question to what extent we can
use semi-structured database techniques to implement file systems and enhance them with
a standardized and widely accepted query interface. As such we represent both data and
metadata in the lingua franca of the Internet, i.e., XML, and deal with it using its related
tools XQuery/XPath.

3 Mapping a File System to XML

Naive mapping of a directory structure. A straight-forward approach to map a simple
exemplary directory structure to XML is depicted in Figure 1. While this representation is
simple, it keeps the proven hierarchical structure alive.

Directories are either empty or recursively consist of other directories and/or files. All
defined types and declared elements belong to a target namespace—prefix £s—to identify
them as file system entities. Expressed in XML Schema, the definition thus yields:

<complexType name="directoryType">
<sequence>
<element name="directory" type="fs:directoryType"
minOccurs="0" maxOccurs="unbounded" nillable="true"/>
<element name="file" type="fs:fileType"
minOccurs="0" maxOccurs="unbounded" nillable="true"/>
</sequence>
</complexType>

We intentionally ignore the UNIX principle that “Everything is a file”, but follow our
paradigm to make information explicit. Thus we distinguish between named pipes, block
and character devices, sockets as well as hard and symbolic links. As a consequence “Ev-

S tree /tmp/a

/tmp/a

|-- b

| ‘—-— hardlink_to_org.txt
|-— ¢

| ‘-— org.txt

|-—d

‘- e

[same file

hardlink oe
to_org.txt
| f _______________

\

-— g
|-— symlink_back_to_f -> ../../f/ :
‘-— symlink_to_org.txt -> ../../../c/org.txt !

7 directories, 3 files

symlink - symlink
to_org.txt . back_to_f -

Figure 2: A directory hierarchy including links. (left: output of UNIX t ree command, right: DAG
visualization)

erything is an element” in our mapping. Strictly speaking, the term directory tree is de-
ceptive when links are involved. The more precise representation of a directory hierarchy
would be a directed graph.

Directory hierarchy as a directed graph. Enhancing the exemplary directory hierarchy
with some hard and symbolic links leads to Figure 2. Symbolic links may point to files
(devices etc.) or directories, build cycles, or may even be broken, i.e., point to non-existing
file system entries. At least three ways exist to model these conditions in XML, either by
using the XLink/XPointer Language [W3CO01], [W3C02], by using XML 1.0 ID, IDREF,
IDREEFS attributes [W3C06a] or by enforcing a constraint using the key and keyref
elements provided by XML Schema. We will omit the details here.

In general the file system mappings are built in a depth-first preorder tree traversal, start-
ing from the topmost directory. Whenever a symbolic link is encountered, its target
is resolved and referenced. Broken/dangling symbolic links are labeled with attribute
@fs:valid="false". Additionally, the attribute @fs:readlink stores the output of
the homonymous UNIX system command.

Inclusion of content. A central issue of the mapping is the inclusion of textual contents
into the XML representation to allow the full range of XQuery retrieval features, defined
by the emerging XQuery Fulltext specification [W3C06¢]. The mapping process itself is
pretty straightforward: all content is enclosed in <content> and resides in a mime-type
specific namespace, e.g. <txt:content>.

We also expect the inclusion of additive structural information to be performed for any

meaningful file type, and we demonstrate the idea by applying it to musical metadata as
discussed in [Pac05]. The following describes a music title using a simplified MPEG-7
markup (A “real life”, and thus rather lengthy, mapping of ID3 information is defined by
MPEG-7 [ISO04)):

<file fs:name="Contrapunctus 9 a 4 alla Duodecima.mp3" ...
fs:suffix="mp3" fs:type="audio/mpeg">
<mp3:content mp3:track="9/11" mp3:version="id3v2"
xmlns:mp3="urn:sidastox:content :mpeg7:1id3v2:simplified">
<mp3:title>Contrapunctus 9 a 4 alla Duodecima</mp3:title>
<mp3:albumtitle>Die Kunst der Fuge</mp3:albumtitle>
<mp3:comment>BWV 182</mp3:comment>
<mp3:creator>
<mp3:role mp3:type="artist">
<mp3:name>Robert Hill</mp3:name>
</mp3:role>
<mp3:role mp3:type="composer">
<mp3:name>Johann Sebastian Bach</mp3:name>
</mp3:role>
</mp3:creator>
<mp3:recordingyear>1970</mp3:recordingyear>
<mp3:genre>Classical</mp3:genre>
</mp3:content>
</file>

To summarize this section: Although the proposed mapping is straightforward it (a) fulfills
our paradigm to externalize formerly hidden information and (b) keeps the well-known
and proven directory hierarchy alive. By stepwise porting a UNIX file system to XML, we
can observe that mapping is possible without loss of information. Quite on the contrary,
the leverage of tacit information, formerly encapsulated in various formats, leads to a
standardized and easily accessible representation. This provides a basis to operate on file
system data with database technology, and we are now able to query the data itself and
to apply information retrieval techniques, such as fuzzy information retrieval or relaxed
structural queries.

4 Basic Operations on File Systems using XQuery et al.

To actually work on the proposed mapping as a user would work on a file system, basic
operations can be expressed in XPath, XQuery, and XQuery Update. The following chap-
ter will introduce selected, frequently used UNIX commands (that operate on file systems)
and their translation to the XML domain. Together with the previously proposed map-
ping, they provide a basis for the evaluation in Chapter 5. As in the previous chapter we
will stick with UNIX-based operating systems and their commands but claim that other
environments have similar operations.

Path names and path expressions. Navigation in file systems and navigation in XML
documents have quite a lot in common: paths play an important role. For XML, path
expressions are the core construct of XPath; they represent a fundamental part of XQuery.
For file systems, path names are—since their introduction in the PDP-11 system—the nat-
ural way to address files. In both worlds paths consist of a sequence of steps, syntactically

path names path expressions
self::fs:dir
.. parent::fs:dir
6o/ +/0n child::fs:dir[@fs:name="dp"]/.../child::fs:dir[@fs:name="0,"]
2R xgfs:fsRoot () /-
-/ f --+/child::fs::*[@fs:name="f"]

Table 1: File system path names to XPath/XQuery path expressions

separated by a slash ("/’): so/s1/.../sn. Each step s; ... s, operates on the result of its
previous step s;—1. Depending on the type of the path (absolute or relative), the origin for
the first step sq differs. For absolute paths it is the topmost directory and the topmost node
of an XML document, respectively. In the relative case it is the current working directory
and the current context sequence (cs). Absolute path names are notated with a leading
’/’. A special marker for relative path names may be omitted. However, a relative path
name do/.../d,/ f with directory names (J;) and a device/socket/file (f) is equivalent to
./d00/.../6n/ f, where’. denotes the current working directory. Given the proposed map-
ping, file system path names (py¢.) translate to path expressions (pz4) as shown in Table 1.

Traversing the directory hierarchy. Most basic operations, such as changing the di-
rectory (chdir/cd) or listing the directory contents (1s), are completely based on path
names. In the following, UNIX commands such as cd py, (operating on the file system)
are in the following mapped to xgfs:cd (pzq) (operating on the XML document).

Navigate to root. Because we allow several file system instances to be stored in one XML
document, xgfs: fsRoot (-) allows to select and determine a root directory. Its behavior
is comparable to XQuery’s £n:root () function, but returns the topmost directory node
of the file system instead of the root node in the same tree. If the argument contains a
file system identifier of type anyURT or any file system node, the according root directory
node is returned.

XQuery function xqfs: cd (+), in its different flavors, maps the functionality of the homony-
mous operating system command. Traversing the directory hierarchy basically means ap-
plying XPath expressions on element (dir) nodes. It is thus sufficient to restrict the
operations to element (dir) nodes. This is reflected by the signatures of the implement-
ing functions. Their return value and their effective arguments are of type element (dir).
If a file system path name py, is accepted as string argument it is instantly converted to its
element (dir) counterpart. Therefore the xgfs:cd(-) function always evaluates path
expressions encapsulated in functions. Sometimes path names are converted to path ex-
pressions as a preprocessing step.

xqfs:cd (., pys) switches the context to path name py,. A path name is expected in file
system-like notation as string and converted to an XPath expression, according to Table 1.
If py is an absolute path, the current context node °.’ is used to find the file system root.

> doc ("mappedfs.xml") /xgfs:cd (., ’/usr/bin’)/xqgfs:1ls(.)

Query returned 320 results:

Remark:

xgfs:cd (., "/usr/bin’)

is evaluated as

xgfs:fsRoot (.)/child::fs:dir[@fs:name="usr"]/child::fs:dir[@fs:name="bin"]

Simplified, the context sequence is a set of items returned by a previous evaluation, i.e.,
the result of an expression. In XQuery part of the dynamic evaluation context is called
the focus, consisting of three items: the context item (’.’), i.e., the item currently being
processed, the context position, and the context size [W3C06b]. Thus, for an expression
(e) that operates on a given context sequence cs/e, expression e will be evaluated with *.’
(the current context item) set to each item in the context sequence.

In a nutshell. Since path names are a simple sequence of child and parent steps in a
hierarchy, they are ’naturally’ supported by XPath. Constructions like the definition of
default prefix paths, stored in a user’s environment by the operating system, are inherently
given in XPath. Basically, they provide the parallel lookup of directories. Moreover, a
sequence of qualifying directories may be selected in XPath by a single expression and
used as input for the next step. In contrast to a static string, containing, e.g., directories
with executable files, the relevant directories may be returned and dynamically adopted
by a single XQuery expression. Thus, for XPath it is quite simple to actually switch to
multiple directories in one step and list all bin directories in the file system:

’ > doc ("mappedfs.xml") /descendant-or-self::fs:dir[Q@fs:name="bin"]/xqgfs:1s(.)

With XQuery, the result set may easily be filtered, according to access control lists, file
permissions and the like.

Conversion from path names to path expressions and vice versa. Since conversions
between path names (pn) and path expressions (pe) provide a bridge between both worlds,
two dedicated functions—xqfs:pn2pe (-) and xgfs:pe2pn (-) —deal with this task.

xgfs:pn2pe (-) expects a UNIX file system path name as string and converts it to an
equivalent XPath expression as seen in Table 1. xgfs:pe2pn (-) returns the preserved
UNIX file system path name for arbitrary nodes in the mapping.

declare function xgfs:pe2pn($f as element ()+) as xs:stringx {
for $e in $f
return fn:string-join(
for $v in $e/ancestor-or-self::x
return if (Sv/@fs:root) then ’’ else fn:data(Sv/@fs:name)

AN

}i

The function is equivalent to the UNIX command pwd. Passing the current context item
will exactly behave as expected:

> doc ("mappedfs.xml") /xgfs:cd (., ’/home/holu’)/xgfs:pwd(.)

Query returned 1 result:
/home/holu

Most functions make direct or indirect use of these conversion methods. This is pretty
obvious as the functions provide an interface for legacy applications. Path names are
passed in a familiar manner as input to the XML data store, and the result is returned in
the same way. For instance, the search for a music album containing the word ’Friede’
returns a set of path names which can then be processed by any available application.

> doc ('mappedfs.xml) /xqfs:locate(., //mp3:albumtitle[contains (text(), ’‘Friede’)])

Query returned 10 results:
/usr/local/share/music/BWV 116 ’'Du Friedeflirst.../...Christ.mp3

/usr/local/share/music/BWV 158 ’Der Friede.../...Osterlamm.mp3

In the following, we will briefly look into a few more commands as they are used in the
evaluation in Section 5. We will take a look on how the data store may be modified and
how existing content can be searched.

Modify and search the data store. Of course, it is essential to add new, modify exist-
ing and remove obsolete content in a storage system. A bunch of UNIX commands is
dealing with such issues, e.g., rm, rmdir, touch, mkdir, and, consequently, all other ap-
plications that modify existing content. Most commands offer several options to specify
exactly how they are supposed to operate. Some of them extend the area of operation, such
as flag —r, that usually instructs the command to operate recursively on descendant entries.
Commands such as [touch pfs ...] or [rm —-rf pys ...] are relatively simple
to express. It is sufficient to resolve the targets specified by the list of path names and
modify/remove the entries. However, such operations have side effects, and XQuery, as a
declarative language, has no means for it. At the time of writing, update functions—such
as remove, insert, replace, and rename—are not yet part of the XQuery 1.0 Recommen-
dation. The first drafts of the XQuery Update Facility [W3C06d] have been published.
Currently, state-of-the-art databases support updates through either proprietary extension
of XQuery or implementations of an older XUpdate draft [LMOO] which is not maintained
since 2001. For the implementation we therefore use functions in the xhive namespace,
that do data modifications as a side effect and return an empty sequence.

Commands such as [rmdir [-p] pss...] need some preprocessing as they impose
constraints on their targets. For instance, a directory will only be deleted if it is empty.
Option -p treats each argument as a path name of which all empty components will be
removed, starting with the last component (man 1p rmdir). A recursive function would
be a straight-forward approach to implement such behavior in XQuery. The approach we
choose later in our evaluation is to follow the path bottom up and to check each node to
just contain a single (empty) directory. By such, a single (the topmost qualifying) directory
node is returned which is removed together with its (empty) directory descendants.

Summary. In this section we provided some examples for the implementation of com-
monly used UNIX commands by XPath/XQuery operations. All discussed (and some
more) functions are combined in an XQuery library module (fsops.xgl). Shortly sum-
marized, most operations resolve path names to path expressions as a first step. The result-
ing context sequence is mostly narrowed down to elements of a specific type. According to
that type, it is declaratively described how to list/remove/sort, i.e., process it. Because of
the declarative nature of XQuery, most implementations of UNIX commands are of great
simplicity. This may overstate the issue, but the representation of data in XML allows
for declarative programming in a formerly purely imperative environment. While this is
convenient to implement the upcoming ad-hoc evaluation, we will investigate if it is still
feasible to work interactively with the proposed data store.

S Evaluation of File System Mappings on X-Hive/DB

Testing our approach on a general-purpose XML-aware database, the upcoming evaluation
is focused on the question: Can we work interactively on XML documents representing
file systems and their contents? Basic behavior patterns that occur when working with file
systems are simulated. Since the navigation along the directory hierarchy is a crucial task
for various commands, it is evaluated in the first place. The second experiment aims at
modifying the data storage, therefore entries are added to and removed from the storage.
The last test is focused on search and retrieval functionality.

Description of the test environment. All tests were performed on a 64-bit system with a
2.2 GHz Opteron processor, 16 GB RAM and SuSE Linux Professional 10.0 with kernel
version 2.6.13-15.8-smp as operating system. Two separate discs were used in our setup
(each formatted with ext2). The first contains the system data (OS and the database), the
second the input data and the internal representations of the shredded documents. The
query results are written to the second disc. X-HIVE/DB 7.3.1 [XHO06] is chosen as test
candidate for two reasons: (a) It has proven to be one of the best available, commercial
solutions for persistent XML processing [BGvK™106], (b) it is the most complete system
presently available. It provides element, value, path, and even fulltext indices as well
as update functionality. A JAVA-based benchmarking framework PERFIDIX, developed
within our research project [GHK™06], is used to facilitate a consistent evaluation of all
tests. The framework was initially inspired by the unit testing tool JUNIT[GBO0G6]; it al-
lows to repeatedly measure execution times and other events of interest. The results are
aggregated, and average, minimum, maximum, and confidence intervals are collected for
each run of the benchmark. PERFIDIX executes a specified query for a dedicated number
of times, i.e., number of runs (#runs) in the following tables. Each run is divided into three
steps: Step one creates a new session, connects to the database server and registers the ses-
sion. Step two triggers the execution of the query (incl. commit). The execution time of
this step is actually measured. Step three disconnects from the database server and termi-
nates the session. The overall procedure for each benchmark is a) start database server, b)
load library module fsops . xql, ¢) execute benchmark (the three steps described above)
n-times and finally d) stop database server.

no | query steps
ql | doc (" mappedfs.struct.xml’)/xgfs:cd (., ’/home/holu’) 2
q2 | doc ('mappedfs.xml’) /xqfs:cd (., ’/home/holu’) 2
q3 | doc (' phobos04.xml’) /xgqfs:cd (., ’/home/holupire’) 2
g4 | doc (' mappedfs.struct.xml’)/xgfs:cd(.,’ /usr/share/doc/rfc/.../tar’) 8
q5|doc (" mappedfs.xml’) /xgqfs:cd(., ’/usr/share/doc/rfc/.../tar’) 8
q6 | doc (' phobos04.xml’) /xgqfs:cd(., ’/home/cebron/.../unikn/knime/") 8
q7 |doc (" phobos04.xml”) /xgfs:cd (., ’/home/cebron/.../tmp/props/’) 19

Table 2: Path queries for test scenario I with number of path steps

no [docsize| min | max | avg | stddev |#runs
ql| 7M | 0.008 | 0.139 |0.014 | 0.010 | 1000
gq2| 230M | 0.009 | 0.189 |0.014 | 0.012 | 1000
q3|8600M | 0.009 | 0.185 [0.016 | 0.013 | 1000
g4 7™ | 0.024 | 0.292 |0.031 | 0.015 | 1000
q5| 230M | 0.034 | 0.264 |0.041 | 0.015 | 1000
g6 | 8600M | 0.011 | 0.340 |{0.017 | 0.016 | 1000
q7|8600M | 0.014 | 0.261 |0.022 | 0.018 | 1000

Table 3: Path queries on file system mappings (without index in sec.)

Query scenario I: The directory hierarchy

Task description. Navigating the directory hierarchy is essential for almost all file system
tasks. Queries 1-7 perform a simple traversal down the directory hierarchy, which is done
by the cd command. This includes the translation from path names to path expression and
the evaluation of the latter. The mappings reveal a maximum depth of 8 for the mappedfs
documents and a maximum depth of 19 for the research server (phobos04.xm1). For each
mapping, a path of length 2 and a path of length 8 is evaluated. For the third mapping an
additional descent to the deepest directory is performed. The serialization, i.e., the output
of the resulting nodes, is not measured since only the costs of the traversal are relevant.
The test is carried out twice: Phase one operates on a vanilla database instance, phase two
uses a value index on fs:dir/@fs:name. Queries and results are combined in Tables
2-4.

Result interpretation. At first we observe that the average runtime is always close to the
minimum. This can be derived from the benchmark’s layout. The internal log of PERFIDIX
revealed that the first run is always the slowest. Considering the fact that the database
server is shut down only between the different queries and not between each run, one can
make an educated guess that this is due to cache influence. As the operating system also
caches, a hot cache evaluation is nevertheless appropriate. Independent from cache influ-
ence, the first important result is that the amount of stored content does not interfere with a
high-performance path traversal. Execution time for path navigation are in the same range

no|docsize| min | max | avg | stddev |#runs
ql| 7M | 0.009 | 0.100 |0.014 | 0.010 | 1000
q2| 230M | 0.009 | 0.175 |0.015 | 0.011 | 1000
q3|8600M | 0.009 | 0.131 |0.014 | 0.009 | 1000
g4| 7M | 0.011 | 0.180 |0.018 | 0.012 | 1000
q5| 230M | 0.009 | 0.162 |0.016 | 0.010 | 1000
q6|8600M | 0.024 | 0.387 |0.032 | 0.019 | 1000
q7|8600M | 0.191 | 1.134 |0.207 | 0.035 | 1000

Table 4: Path queries with value index on fs:dir/@fs:name (in sec.)

for all three mappings, although the document size for each mapping is different. The
outliers in g4 and q5 (avg column) of Table 3 are the consequence of bigger intermediate
result sets during the applied steps, as the path goes along the rfc directory with approx.
4400 entries. This conclusion is supported by the fact that these queries are the only ones
that really profit from the applied value index (see Table 4). For all short paths there is no
real difference, but for longer paths with small intermediate result sets, the value index has
a negative effect on the performance. This is due to the fact that the query is transformed
to explicit child and parent steps along the path. Since the result set of each single step is
relatively small, the additional lookup in the index does not pay off.

Query scenario II: Modification and inspection of hierarchy and content

Add new directories. Queries 8—10 create a new directory structure in the home directory
through function xgfs:mkdir-p (’ jokes/rfc/lst_april’). A check for the exis-
tence of the directory was removed. This allows the same ’directory’ to exist a 1000 times
beneath a common parent. Of course, this is not according to the POSIX specification,
but suits well to test inserts into the directory hierarchy. The tests are performed with and
without a value index (fs:dir/@fs:name) on the directory hierarchy. The construction
time for the new directories yields a maximum value of ~300 ms and the average is in the
range of ~20 ms for both variants.

Add new content. A single directory /home/holu/jokes/rfc/lst_april is created.
Queries 11-13 store document RFC3092 (“The Etymology of Foo”) in this directory.
While the other queries are run 1000 times externally by PERFIDIX, this query is invoked
only once and performs the loop inside the query itself. This allows to store the same file
with different names (“1-RFC3092” to “1000-RFC3092”). The insertion of 1000 text files,
each of size 28K, takes ~10sec for all three mappings. Though, if a fulltext index is sup-
plied for all <t xt : content>, the insertion time climbs up to ~6min! for mappedfs.xml.

List a directory. The previously stored files are listed by queries 14-16 through func-
tion xqfs:1s (’ /home/holu/jokes/rfc/lst_april/’). The time for serialization is
taken into account. For 1000 runs the average value is ~31ms.

Remove content from storage. Queries 17-19 call the function xqgfs:rm-rf (’ /home/
/holu/jokes’). All previously stored RFCs and the directory structure are removed
from the storage, which takes ~3sec for each mapping without full-text index.

no |docsize| min max | avg | stddev |#runs |index
q20| 7M | 0.139 | 1.028 |0.147 | 0.030 | 1000 | —
q21| 230M | 0.198 | 1.175(0.210 | 0.034 | 1000
q22| 8600M | 2.461 | 18.935 |2.537 | 0.520 | 1000 | —
q20| 7M | 0.008 | 0.352|0.013 | 0.013 | 1000
q21| 230M | 0.009 | 0.388 {0.014 | 0.017 | 1000
q22|8600M | 0.010 | 0.325 {0.016 | 0.017 | 1000

+ 4+

Table 5: Exact search for a file name (with and without index on fs:file/@fs:name in sec.)

no |docsize| min | max | avg | stddev |#runs|
q23| 230M | 0.171 | 1.621 |0.182 | 0.049 | 1000
q24|8600M | 1.791 | 3.454 |1.868 | 0.060 | 1000

Table 6: Search for album title to contain ’Friede’ in ID3 information (in sec.)

Intermediate summary. The same conclusions can be derived as in the first experiment.
The cache influence has a major effect, but, generally, the size of the corresponding map-
ping has no influence on the performed operations as they all operate locally. Additionally,
the operations revealed quite a promising performance, in the sense that it is possible to
operate interactively on the file system mappings.

Query scenario III: Searching for content

Exact search for a file name. Queries 20-22 define a search for an exact file name, return-
ing the absolute pathname(s). Serialization time is included.

> doc(...)/xgfs:pwd(//fs:file[@fs:name = ’"ssh’]

Query returned 6 results:
/etc/default/ssh
/etc/pam.d/ssh
/etc/init.d/ssh
/usr/bin/ssh
/usr/lib/apt/methods/ssh
/usrs/ssh

Search for partial string. Queries 23 and 24 return album titles with the word ’Friede’ as
shown in Table 6.

> doc ("mappedfs.xml) /xqgfs:locate(., //mp3:albumtitle[contains (text(), ’'Friede’)])

Query returned 10 results:
/usr/local/share/music/BWV 116 ’Du Friedefiirst.../...Christ.mp3

/usr/local/share/music/BWV 158 ’Der Friede.../...Osterlamm.mp3

Fulltext search. A fulltext index is applied on txt : content with phrase support, insen-
sitive search and removal of English stop words. Only mappedfs.xml is measured and

revealed the expected fast access rates for phrase, wildcard, and boolean queries. The more
interesting results, however, are the failures: For the 8.6G mapping it was not possible to
even build the fulltext index, as a requested array size exceeded the available memory.
Ranking of end results is not yet possible and together with the immense slow down of
update operations the result is contrary to our expectations. Since the fulltext index is
largely based on the open-source project Lucene [Luc06], it seems that the integration and
adoption to a semi-structured database has not yet been pushed to its limits.

Intermediate summary. To maintain an index for the directory hierarchy, fs:dir/Qfs:
name and fs:file/@fs:name is a justifiable approach. There is a certain trade-off for
very explicit path traversals with small intermediate results, but such queries could be
rewritten to make better usage of the index. The number of files and directories are of rela-
tively small size, maintaining the index is thus feasible. While the fulltext index shows an
excellent retrieval performance, it is apparently still unsuitable for large documents, and
the results might indicate that X-HIVE does not seem to have focused on fulltext updates
yet. This is surely a field for further research, since two cutting-edge issues (fulltext re-
trieval in XML and update functionality) are involved. Still, the speed of fulltext updates
in major relational databases as well as in desktop search engines supports our assumption
that fulltext indexing can yield promising performance results.

The discussed evaluation shows first, specific results for X-HIVE. Although being a
generic XML processor, many of the results show interactive response times.

6 Future Work and Conclusion

Work in progress. Currently, there are two closely related projects, i.e., IDEFIX and
BASEX [GHK™06] in our department, where we try to combine file system and database
technology. IDEFIX, a block-oriented persistent XML storage layer, is prepared to serve as
a back-end for the open-source XQuery compiler PATHFINDER [PF06]. IDEFIX evaluates
the relational algebra emitted by PATHFINDER for its native XML encoding and serializes
the final query results. The BASEX FILE SYSTEM (BXEFES), a user-space file system, will
serve as second step towards operating system integration. BASEX uses a native tree
encoding (derived from [Gru02]) to store data and is able to process basic file system
commands. A graphical user interface to visually explore and query the (file system) data
will be presented at the demonstration panel of the conference [GHS07].

Contribution. In the scope of this publication, we provided a proof-of-concept. The
question whether a state-of-the-art XML-aware database management system is capable
to process file system operations as well as demanded query functionality on file system
data represented as XML has been evaluated. We found that navigation along the direc-
tory/content structure is independent of the amount of stored content in the representation.
Basic file system commands, as well as content retrieval, can be performed in interac-
tive time on the constructed file system mappings with a general-purpose XML-aware
database.

As final conclusion it can be stated that traditional file systems are, of course, not obsolete

in terms of mere storage. As soon as the demand for querying and retrieval preponderates
the processing of file systems, using semi-structured database techniques to enhance file
system capabilities is a clear option.

References

[AFMMO2]

[BGVKT06]

[CDF194]

[Dit06]

[DS06]

[GBO6]

[GHK™T06]

[GHSO07]
[GISO91]
[GM99]
[Gra05]

[Gru02]

[GSTT02]

Alain Azagury, Michael Factor, Yoélle S. Maarek, and Benny Mandler. A novel navi-
gation paradigm for XML repositories. JASIST, 53(6):515-525, 2002.

Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rittinger,
and Jens Teubner. MonetDB/XQuery: a fast XQuery processor powered by a rela-
tional engine. In Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis, editors,
SIGMOD Conference, pages 479—490. ACM, 2006.

Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall, Mark L.
McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon, C. K. Tan,
Odysseas G. Tsatalos, Seth J. White, and Michael J. Zwilling. Shoring Up Persis-
tent Applications. In Richard T. Snodgrass and Marianne Winslett, editors, SIGMOD
Conference, pages 383-394. ACM Press, 1994.

Jens-Peter Dittrich. iMeMex: A Platform for Personal Dataspace Management. In
SIGIR Workshop on PIM, August 2006.

Jens-Peter Dittrich and Marcos Antonio Vaz Salles. iDM: A Unified and Versatile Data
Model for Personal Dataspace Management. In Umeshwar Dayal, Kyu-Young Whang,
David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun
Cha, and Young-Kuk Kim, editors, VLDB, pages 367-378. ACM, 2006.

Erich Gamma and Kent Beck. JUnit—A Regression Testing Framework, 2006. http:
//www.junit.org/.

Christian Griin, Alexander Holupirek, Marc Kramis, Marc H. Scholl, and Marcel
Waldvogel. Pushing XPath Accelerator to its Limits. In Philippe Bonnet and Ioana
Manolescu, editors, ExpDB. ACM, 2006.

Christian Griin, Alexander Holupirek, and Marc H. Scholl. Visually Exploring &
Querying XML with BaseX. In BTW, 2007. To appear.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James O’Toole. Semantic
File Systems. In SOSP, pages 16-25, 1991.

Burra Gopal and Udi Manber. Integrating Content-Based Access Mechanisms with
Hierarchical File Systems. In OSDI, pages 265-278, 1999.

Jim Gray. Greetings from a Filesystem User. In FAST. USENIX, 2005.

Torsten Grust. Accelerating XPath location steps. In Michael J. Franklin, Bongki
Moon, and Anastassia Ailamaki, editors, SIGMOD Conference, pages 109-120. ACM,
2002.

Jim Gray, Alexander S. Szalay, Ani Thakar, Christopher Stoughton, and Jan van-
denBerg. Online Scientific Data Curation, Publication, and Archiving. CoRR,
¢s.DL/0208012, 2002.

[ISO04]

[Lau98]

[LMOO]

[Luc06]

[Nor04]

[Pac05]

[PFO6]

[RMS06]

[W3C01]

[W3C02]

[W3C06a]

[W3C06b]

[W3C06¢]

[W3C06d]

[Wil06]

[XHO06]

[ZNO0O0]

International Organization for Standardization. MPEG Music Player Application For-
mat. Coding of moving pictures and audio, July 2004. ISO/IEC JTC 1/SC 29/WG
11N6688.

Simon St. Laurent. Bringing the File System into the File: Making Information
More Accessible Through Object Stores, 1998. http://www.simonstl.com/
articles/filesyst.htm.

Andreas Laux and Lars Martin. XUpdate, XML:DB Working Draft, September 2000.
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html.

Apache Lucene. Lucene—Java-based indexing and search technology, 2006. http:
//lucene.apache.org/.

Donald A. Norman. Emotional Design: Why We Love (Or Hate) Everyday Things.
Basic Books, January 2004.

Franois Pachet. Knowledge Management and Musical Metadata. Encyclopedia of
Knowledge Management. Idea Group Reference, September 2005.

Torsten Grust, Jan Rittinger and Jens Teubner. Pathfinder—XQuery Compilation for
Relational Database Targets, 2006. http://www.pathfinder-xquery.org/.

Kiristoffer Hagsbro Rose, Susan Malaika, and Robert J. Schloss. Virtual XML: A
toolbox and use cases for the XML world view. IBM Systems Journal, 45(2):411-424,
2006.

W3C. XML Linking Language (XLink) Version 1.0, June 2001. http://www.w3.
org/TR/2000/REC-x1ink-20010627/.

W3C. XPointer xpointer() Scheme, December 2002. http://www.w3.0org/TR/
2002 /WD-xptr-xpointer-20021219/.

W3C. Extensible Markup Language (XML) 1.0 (Fourth Edition), August 2006.
http://www.w3.0rg/TR/2006/REC-xm1-20060816.

W3C. XQuery 1.0: An XML Query Language, November 2006. http://www.w3.
org/TR/2006/PR-xquery—-20061121/.

W3C. XQuery 1.0 and XPath 2.0 Full-Text, May 2006. http://www.w3.0rg/
TR/2006/WD-xquery—-full-text-20060501/.

W3C. XQuery Update Facility, July 2006. http://www.w3.org/TR/2006/
WD-xqupdate—-20060711/.

Erik Wilde. Merging trees: file system and content integration. In Les Carr, David De
Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin, editors, WWW, pages
955-956. ACM, 2006.

X-Hive. X-Hive DB Version 7.3.1, 2006. http://www.xhive.com/.

Erez Zadok and Jason Nieh. FiST: A Language for Stackable File Systems. In USENIX
Annual Technical Conference, General Track, pages 55-70. USENIX, 2000.

