Polishing Structural Bulk Updates in a
Native XML Database

Master thesis presented by
Lukas Kircher

Universitat 4
Konstanz

Submitted to the Department of Computer and Information Science at the
University of Konstanz

Reviewers

Prof. Dr. Marc H. Scholl
Prof. Dr. Marcel Waldvogel

October 2013

Abstract

BaseX is a native XML database on the foundation of a fixed-length, sequen-
tial document encoding. Built with a strong focus on reading performance,
this thesis shows that the Pre/Dist/Size encoding is yet perfectly capable
of handling massive bulk update transactions. Despite its theoretical limi-
tations regarding structural changes of the tree, we show that performance
is indeed restricted by the document order and disk access patterns. Dur-
ing tests with the XQuery Update Facility (XQUF), we delete 1.8 million
nodes in 22.4 seconds, evenly distributed over a 1.1GB XMark document in-
stance. Compared to the prior approach, this equals a reduction of processing
time by 99.99%. To achieve this, we extend the obligatory implementation
of the XQUF pending update list with an additional low-level layer, that
pre-calculates tree structure adjustments in-memory. This layer adds little
overhead and further enables us to merge update operations and curb frag-
mentation that finds its origin at the user level. To not violate the document
order, the XQUF is only arduously brought together with the concept of effi-
cient bulk updates. A method is introduced that imposes an order on update
primitives to finally get a ready-to-apply sequence of atomic updates. The
reviewed implementation is fully consistent with the XQUF specification and
has already proven rock-solid efficiency in production use. A few theoreti-
cal paragraphs on alternative approaches, disk access patterns and memory
consumption highlight sleeping potential and prepare further progression.

Contents

Abstract i
1 Introduction 1
1.1 Motivation. 1
1.2 Contribution 2
1.3 Overview e 2

2 Efficient Structural Bulk Updates 3
2.1 Introduction 3
2.2 Preliminaries 3
2.2.1 XML Encoding in BaseX 3

222 XPathAxes 5

2.2.3 Effects of Updates on the Table 7

2.2.4 Costs of Structural Updates 8

225 Bulk Updates, 10

2.3 Theory behind Efficient Structural Bulk Updates 11
2.3.1 Delaying Distance Adjustments 11

2.3.2 Mapping Pre Values Before and After Updates 13

2.3.3 Adjusting Distance Values Explicitly 15

2.3.4 Adjusting the Appropriate Distance Values 16

2.3.5 Constraints of the AUC 18

2.4 Implementation of Efficient Structural Bulk Updates 19
2.5 Related Optimizations 28
25.1 Replaces 28

2.5.2 Merging Atomic Updates 31

2.6 Future Work 32
2.6.1 Delayed Distance Updates Based On ID-PRE Mapping 32

2.6.2 Memory Consumption of Distance Tracking 35

2.6.3 Speed-up of Pre®® « Premew 35

2.6.4 Caching Insertion Sequences 36

Contents

3 Leveraging Efficient Bulk Updates with the XQuery Update

Facility

3.1 From Update Primitives to Atomic Updates . . .
3.1.1 Update Primitives and Target Nodes . . .
3.1.2 Order of Update Primitives

4 Performance of Efficient Bulk Updates

4.1 Setup
4.2 Bulk Queries oL
4.3 Basic, Lazy & Rapid Replace

4.4 Memory Consumption of Efficient Bulk Updates
5 Related Work
6 Conclusion

Bibliography

37
38
38
39

43
43
44
48
51

52

55

60

1 Introduction

1.1 Motivation

Relational, object-oriented, NoSQL, XML-enabled, etc. - although flooded
with numerous alternatives, there is still a place in the market for native
XML databases (NXD). Different problems require different measures. As
a highly-efficient open-source XML database engine and query processor,
BaseX ! fills one of the niches successfully. With the foundation of a company
that evolves around the product and data-related consulting services, the
project underlies constant development. And naturally, use cases get more
challenging.

Naively, we thought that the initial implementation of the XQuery Up-
date Facility (XQUF) is capable of handling even large bulk updates. Where,
for instance, deleting ten thousand single nodes from a database could still
be finished in reasonable time, it soon became obvious that the number of
updated locations easily ventures into the hundreds of thousands. Updates
of this size either take days to complete, or have to be split up over several
sub queries to circumnavigate the quadratic increase in complexity.

To be highly regarded in the community of database users, being efficient
only gets you so far. Reliability, standard-conformity and a rich feature set
reside just as high on the list of most wanted qualities. Yet, they often
interfere with feasibility. We are therefore most proud of BaseX, seeing that
it yields superb reading performance, meeting all the requirements of a full-
fledged database system. Griin sums up the theories and implementation in
his 2010 thesis |Gr0]. Being processed ok, we are now eager to track down and
eliminate the current limits of structural bulk updates as well. Why? Being
slow never helps - and we also think the fight for an efficient architecture is
neither lost nor won on paper.

'http://www.basex.org, A scalable and high-performance, yet lightweight XML database
engine and XPath/XQuery processor

1. Introduction 2

1.2 Contribution

BaseX is based on an encoding that caters primarily to an efficient evaluation
of reading queries. Yet, in the course of this thesis, we extend it in a way
that updating queries are evaluated just as well. The work especially focuses
on the speed-up of massive bulk queries, that alter the structure of the XML
tree in multiple locations.

There have been several attempts in the last years to get hands on the
Holy Grail of a native XML encoding that is compact and yields both, ex-
cellent reading and writing performance. ORDPATH [OOP™04] is one of the
well-known and repeatedly enhanced representatives. Despite some propos-
als for such encodings, we do not know of a single full-scale NXD based on
a dynamic labeling scheme, that offers high performance as well as complete
support for the XQUF standard.

While the general contribution might be considered limited as it is strongly
tailored to BaseX, we think it is only partially so. Potential future adapta-
tions can find clear answers to the two following problems:

1. How dreaded structural bulk updates can be evaluated efficiently on a
fixed-length sequential encoding.

2. How XQUF queries are processed to leverage efficient bulk updates.

While question one is conclusively answered, the second point requires some
background knowledge that is found in Kircher’s bachelor thesis [Kir10].

1.3 Overview

In chapter 2, we get started with the current state of affairs regarding Ba-
seX and bulk update transactions after introducing some preliminaries. After
this, we will develop a theoretical approach that eliminates the main perfor-
mance drawbacks. A detailed discussion of the implementation and further
optimizations is followed by recommendations for future work. Chapter 3
takes a closer look at adaptions to the XQUF module, that are necessary in
order to speed up bulk updates. An in-depth look at the performance of the
actual implementation is presented in chapter 4 where we also identify the
remaining weak points and briefly propose solutions. Having introduced the
relevant background, we add a few words on related work in chapter 5 to
put different approaches into perspective.

2 Efficient Structural Bulk Up-
dates

2.1 Introduction

In order to show the general problem with bulk updates and to develop a
solution, it is necessary to first take a look at the basics. Section 2.2 starts
the discussion with a brief description of the mapping schema in BaseX.
Being regularly referenced to describe navigation in a document, section
2.2.2 reviews the most important XPath axes. After this, we close in on the
actual problem we want to solve by taking a look at the general effects of
updates on the table (section 2.2.3) and particularly at the costs of structural
bulk updates (sections 2.2.4 and 2.2.5).

Section 2.3 is all about a theoretical approach to efficient structural bulk
updates. It first introduces a specific structure that caches atomic updates
and reports on its use to speed up the process, as well as its restrictions.
Details and pseudo-code of the actual implementation are given in section
2.4. The additional layer enables us to add a few optimizations conveniently
(section 2.5) and provides room for future undertakings (2.6).

2.2 Preliminaries

2.2.1 XML Encoding in BaseX

In his thesis |Gr0|, Griin explains the underlying encoding and its origin in
great detail. We consequently introduce only the facts that are important
for the following discussion. A proper encoding for a native XML database
maps input and output in both directions. On the one hand, a given docu-
ment should be stored in an efficient manner and on the other, it must be
possible to restore the original document with all its details from the infor-
mation in the database. In-between, typical queries should be evaluated effi-
ciently. Regarding XML, an important property is the document order which
is equivalent to a preorder traversal of the XML tree. Whenever queries are
performed, the order of the result sequence adheres to the document order.

2. Efficient Structural Bulk Updates 4

<A>
<C/><D/>
<E/>
<F><G/></F>

Figure 2.1: XML sample document

pre dist size wval

O T W N O
I S R e
D = = =

QHEmgOQwW e

(a) abstract tree incl. (b) sequential table
(pre,dis) tuples

Figure 2.2: Relational encoding of sample document.

XML has been introduced first and foremost to store textual content in a
human-readable fashion. Storing a book with all its chapters, headings and
paragraphs in XML is a good example for the importance of the document
order. With XQuery as the most important interface for access, a suitable
encoding maps the properties of individual nodes in a way that the main
XPath axes can be evaluated efficiently. BaseX features a fixed-length, se-
quential encoding that combines all these characteristics. Figure 2.1 shows
a small XML snippet that we use to visualise the way from document to
database, whereas figure 2.2 shows the mapping in detail. During the pars-
ing step, the input document is traversed in preorder. For each visited node,
a tuple of the form (pre, dist, size, val) is created that reflects the document
order, tree-structure and the size and value of a node. Each tuple is then
added to a sequence or sequential table.

Pre (pre)

The pre value serves as a quasi node identifier and reflects the number of
nodes that have been visited before. Counting starts at zero and the maxi-
mum pre value equals the number of tuples in the table minus one. If nodes
are deleted or inserted, following tuples are shifted accordingly so that this
condition remains always true and the document order unviolated. Pre val-

2. Efficient Structural Bulk Updates 5

ues are stored implicitly as they equal the row number. The actual cost of
shifting pre values is due to shifting of tuples on disk.

Distance (dist)

The distance value keeps track of the tree structure by encoding the parent
node in a relative manner. As the distance value is equal to the number of
nodes between a node and its parent, it follows that the parent of a node n
is equal to its pre value minus its distance, or n.par = n.pre - n.dist. Having
a distance of one, the parent of the root node is -1.

Size (size)
The size value encodes the size of a node, that is the number of nodes in its
subtree plus itself.

Value (val)
For now we use the value field to keep additional information on the node
which is most often the element name, if not stated otherwise.

The actual real-world encoding contains some more information that we
leave out for now, with the node kind being the most prominent one.

2.2.2 XPath Axes

Navigation in an XML tree can easily be described by means of the XPath
axes [CD99]. Each axis describes a set of nodes relative to the given context
node. As axis steps are frequently referred to during the argument we shortly
introduce the most important ones (figure 2.3) and show how they can be
evaluated based on our specific numbering scheme.

Parent
As seen before, the parent is encoded relatively via the distance and has the
pre value par.pre = c.pre — c.dist.

Child

The first child n resides at position c.pre + 1 = n.pre. The remaining child
nodes are determined iteratively by adding the size to the pre value of the
current child, hence next.pre = current.pre + current.size. Iteration stops
once next.pre > c.pre + c.size.

Ancestor
The ancestor axis is evaluated by calculating the parent of the current node
iteratively until current.pre = 0.

2. Efficient Structural Bulk Updates 6

P

(a) parent / (b) ancestor / (c) preceding- /
child descendant following-sibling

(d) preceding / following

Figure 2.3: XPath axes relative to the context node (c).

Descendant
All descendants of node c¢ lie in the interval [c.pre + 1, c.pre + c.size — 1].
Starting at c.pre—+1 it is straightforward to determine the set of descendants.

Preceding-Sibling

An extra step is necessary to determine the set of preceding-siblings. First
the parent node par is determined via par.pre = c.pre — c.dist. Starting at
par.pre the child axis of par is evaluated until context node c is hit.

Following-Sibling
Accordingly to the preceding-sibling axis, the parent of ¢ has to be deter-
mined. Starting at ¢ the child axis of par is iterated until current.pre >
par.pre + par.size.

Preceding

The preceding axis includes all nodes n with n.pre < c.pre, with the excep-
tion of ancestor nodes. In course of this work we never really access it but it
can be calculated simply by choosing pre values in the interval [0, c.pre — 1]
and subtracting the ancestor nodes (as well as attributes and namespace
nodes).

2. Efficient Structural Bulk Updates

pre dist size value

pre dist size value

0 1 3 A
1 1 1 B
2 2 1 C

(a) table before update

0 1 3 A
1 1 1 X
2 2 1 C

(b) table after update

Figure 2.4: An atomic value update renames node B to X.

Following

The set of following nodes consists of all nodes in the document after the
closing tag of the context node. Pre values lie in [c.pre + c.size, T.size — 1],
where T.size equals the number of tuples in the table.

Other Axes

There are a few more axes with some of them being conglomerates of the
presented ones (ancestor-or-self, descendant-or-self) and others that are ei-
ther trivial (self) or not important for the ongoing discussion (namespace,
attribute).

2.2.3 Effects of Updates on the Table

Of course, a database system without the possibility to modify its content
is of limited use. In course of this work, the term atomic updates will occur
regularly. An atomic update is the most basic form of an update that can be
applied to a database. We distinguish between two groups of atomic updates.
Value updates are the ones easy to deal with, as they only induce changes to
the value field of a tuple. An example would be the renaming of an element
node. In figure 2.4 element B is given the new name X. The number of tuples
in the table remains untouched, as well as the overall structure. Changes are
exclusively applied to the value field of node B which has a pre value of 1.
We take away from this example that each atomic value update results in a
value or reference update of a single tuple which can be carried out quickly.

Among the structural updates there are (for now) two distinct types:
insert and delete. Structural atomic updates lead to more profound changes
of the table as new nodes are inserted or existing ones deleted. The number
and sequence of tuples changes which is directly reflected in the pre, dist and
size values. Deleting node C' from our earlier example shows the consequences
(figure 2.5). Updated values in the table are printed bold.

2. Efficient Structural Bulk Updates 8

pre dist size value

U W+ O
W =
N~ = N O

QHEOoOw®E >

(a) tree after update (b) table after update

Figure 2.5: Deleting a node from the table.

At least for the given example we can see that structural changes can
indeed be very expensive. If node D is deleted instead, node C' would remain
untouched, but in this specific case each tuple of the table has to be changed
in one way or another. The deleted node C had a pre value of 2. As pre
values of the tuples are continually numbered, all tuples with pre greater 2
are shifted by -1, the number of deleted tuples (nodes D, E, F, G). If the
number of tuples between a node and its parent changes the distance value
must be updated, which is the case for nodes D, F, F. The size values of
nodes A and B are reduced by 1, as they both loose a node in their subtree.
In the end, the total costs depend highly on document structure and location
of the update.

2.2.4 Costs of Structural Updates

This paragraph provides a more general view on update costs and how pre,
dist and size values are influenced by structural updates in total. We insert a
document A under the parent a at location p into our table. The number of
inserted nodes is s, the size of the destination table equals n. The individual
columns of the table are updated as follows:

Pre

All tuples t;, where ¢;.pre is in the interval [0, p — 1], remain untouched. For
all t;.pre in the interval [p,n — 1], t;.pre is recalculated as t;.pre = t;.pre+s.
In the worst case, if p = 1 all tuples except the first one have to be shifted.
As mentioned before, pre values are implicitly given by the row number. To
avoid excessive disk access the table in BaseX is divided into pages and the
order of pages is stored in a directory. To save I/O by avoiding tuple shifting,
additional tuples are stored consequently at the physical end of the table on
disk. Updating pre values is therefore not considered cost-prohibitive and
depends mostly on p, the current page structure and fragmentation.

2. Efficient Structural Bulk Updates 9

Size

The size value of a tuple t; has to be updated if ¢;.pre < p < t;.pre+1t;.size.
That means if the number of nodes in the subtree of a tuple t; changes, it
follows that t;.size = t;.size + s. With regards to the updating location p,
all ancestor tuples have to be updated. The number of ancestors of a node
equals its level (if the root node has a level of zero). For a ’sane’ document,
updating the appropriate size values is not a problem even if there is some
overlap to be expected, which is especially true for the root.

Dist

The costs of updating distances is harder to predict. Formally, for a tuple
t;, if (t;.pre — t;.dist) < p <= t;.pre then t;.dist = t;.dist + s. That means
if the number of nodes between a node and its parent changes, its distance
has to be adjusted accordingly. Or, looking at it from the update location
perspective, nodes to update lie on the following-sibling axis of p and on
the following-sibling axis of all ancestors of p. By using size and distance
values this set of nodes can be computed efficiently. It is obvious that the
size of this set highly depends on the structure of the document. Whereas
the levels of a document are limited, the number of siblings is not. Figure 2.6
shows the worst-case that is easily extended to replicate real-life scenarios. If
node m with m.pre = p is deleted, all following siblings have to be updated.
In contrast to Pre, where updating costs are moderate, distance values are
updated explicitly, which in this case takes n—2 steps. For bigger documents
it can be estimated that each of these steps or distance updates results in
accessing another page on disk or a full I/0O.

P n-1

Figure 2.6: Locations of distance updates upon deletion in a flat document
(marked black).

In general, insert and delete behave similar with the difference being that
an insert at p shifts the existing tuples starting with ¢;.pre = p to the back
by the size of the inserted subtree. Deletion of the tuple r affects the tuples t;
starting at t;.pre = r.pre—+r.size, as the deleted node is no longer part of the
table. It is clear that distance adjustment is the most expensive part of the
updating process at the moment. Besides our theoretical analysis, numerous
profiling sessions with BaseX confirmed us that the practical situation is just
as serious.

2. Efficient Structural Bulk Updates 10
(0) 1. ins(2, Y)
2. ins(1, X)

(1) 2)

Figure 2.7: Bulk update example incl. order of updates.

Figure 2.8: Bulk insertion leading to O((n—1)?) number of distance updates
on level 1.

2.2.5 Bulk Updates

It is important to note that, due to the language specification of XQuery
Update, one is obligated to cache all updates that are to be executed within
a transaction or snapshot in a structure called the pending update list. After
checking whether the application of the pending update list leads to a consis-
tent state of the database, only then can updates be applied. In general, this
concept helps to realize atomicity and consistency. We also use it to tailor the
complete updating process to our encoding schema. Let us consider we want
to perform a bulk update consisting of two insert operations (figure 2.7).
The first insert adds node Y at position 2 and the second insert adds X at
position 1. As we have seen before, inserting or deleting nodes in the table
leads to a shift of pre values for all following nodes. By applying the two
inserts in the given order, from the highest to the lowest pre value, we avoid
recalculating the insert positions. Traversing the result in document order
yields the node sequence (4, X, B, Y, C). Changing the order by inserting
X at position 1 first followed by insertion of Y at 2 would yield the sequence
(A, X, Y, B, C) which is not the desired result. Cached updates are always
applied in reverse document order (with regards to the location) to avoid
exactly this issue.

Clearly, if a single atomic update can be expensive than a sequence of
updates is even more so. Yet, there can be a significant overlap between the
sets of distance values that have to be adjusted. Figure 2.8 shows such an
example. The root node has n children. Into each of these children additional
nodes are inserted, which leads to necessary distance updates on level 1 for
all following nodes. If nodes are inserted into node 1, n — 1 distances have to
be adjusted. In general n — i distance updates are performed for an insertion

2. Efficient Structural Bulk Updates 11

into node ¢ which leads to > yn —i for n nodes. At least for the given
example, distance adjustments are in O((n — 1)?). Real-world use cases are
often based on a similar combination of document structure and update
strategy. Consequently, looking at the characteristics of a bulk update before
touching the table might save us a considerable amount of work. Performance
is not an issue for a single atomic update and we cannot reduce the number of
distance updates without changing the encoding schema anyway. Optimizing
a sequence of updates is therefore the main objective.

2.3 Theory behind Efficient Structural Bulk Up-
dates

In the last sections we took a closer look at the costs of structural updates
and, consequently, at the costs of a sequence of updates. It has been shown
in theory that distance adjustments are cost-dominating. Especially as the
same distances are touched repeatedly, finding a method that avoids redun-
dant access without adding excessive overhead could help to reduce overall
processing time by magnitude. This assumption is also supported by practi-
cal tests.

From now on, a structure named Atomic Update Cache or AUC holds
all atomics of a bulk update in document order, depending on their location.
In contrast to the naive approach, where distances are iteratively adjusted
with each atomic update, the proposed method adjusts distances explicitly
after all updates have been applied. In the following passages we develop
that method with the aid of a few simple examples. Saving time during bulk
updates essentially boils down to the given facts:

e Distance updates can be delayed if updates are applied in reverse doc-
ument order (high-to-low pre value wise).

e The AUC serves as a bi-directional mapping of pre values before and
after updates.

e A new distance can be calculated explicitly for any node based on its
original state and the mapping.

2.3.1 Delaying Distance Adjustments

As it has already been shown, a sequence of updates is executed from the
highest to the lowest pre value to avoid re-computation of the individual
update locations. A tuple ¢ is only shifted if the number of nodes changes in
the interval [0, t.pre]. Similarly, distance values are adjusted if the number
of nodes changes between a child and its parent. Inserting or deleting a
tuple invalidates only the distances of following tuples. In the course of a

2. Efficient Structural Bulk Updates 12

Figure 2.9: State of the document tree before and after bulk update.

bulk update, the part of the table, accessed by consecutive atomic updates,
remains always valid. This fact plays an important role as it enables us to
delay distance updates altogether. To apply atomic updates we proceed as
follows:

1. Traverse atomic updates in the AUC back-to-front, which is equivalent
to a traversal in reverse document order.

2. Insert or delete the corresponding nodes for each atomic update, im-
plicitly shift pre values of the following tuples and adjust the size values
of the ancestors. Distances remain untouched.

3. After all atomic updates have been applied, restore the tree structure
by adjusting distances in an efficient manner.

Figure 2.9 shows a document before and after the execution of a transaction
with two atomic insert operations. The first insert is performed at position
3 where the new node Y is inserted into the parent 0/A, whereas the second
insert is performed at location 2 and inserts X as a child node of 1/B.

Figure 2.10 shows the different states of the table, where changes to the
preceding table are printed bold.

(b) Between the original state (a) to state (b), the node Y is inserted at po-
sition 3 incl. a valid parent reference (dist = 3) and the correct size. As
a consequence, node D shifts to the back and its pre value changes from
3 to 4, whereas the already existing distance value remains untouched.
The size value of A is incremented by 1.

(c) Step three shows the table after the insertion of X at position 2 with a
new distance value of 1 (as it’s a child of B). Once again the following
tuples are shifted and the respective pre values incremented (C, Y, D).
The ancestor’s size values are incremented by 1 (A, B). Again, existing
distances remain untouched. At this stage we can see that nodes (C, Y,
D) still have their original distance values. Based on these, distances
are adjusted at a later point (which will be shown shortly).

2. Efficient Structural Bulk Updates 13

pre dist size wval pre dist size wval
0 1 4 A 0 1 5 A
1 1 2 B 1 1 2 B
2 1 1 C 2 1 1 C
3 3 1 D 3 3 1 Y
4 3 1 D

(a) original state
(b) after first insert

pre dist size wval pre dist size wval
0 1 6 A 0 1 6 A
1 1 3 B 1 1 3 B
2 1 1 X 2 1 1 X
3 1 1 C 3 2 1 C
4 3 1 Y 4 4 1 Y
5 3 1 D) 5 1 D
(c) after second insert (d) after distance up-
dates

Figure 2.10: States of the table during a bulk update.

(d) After updates are finished, distances have to be adjusted. State (d)
shows the final table state.

This discussion allows us to record the observation:

Observation 1 Adjusting distance values can be delayed until the very last
step of the updating process.

2.3.2 Mapping Pre Values Before and After Updates

To adjust distance values explicitly we need to be able to map respective pre
values before and after structural changes take place. We want to know the
pre value of a specific tuple before structural changes have been applied and
v.v.. Based on the AUC, that consists of a sequence of atomic updates in
document order, this can be achieved easily.

Let us consider we want to insert node Y at position 2, insert node X at
position 2 and we want to delete node A/0 (figure 2.11). Nodes A, B and C
are siblings. Again, updates are applied in reverse document order. The final
table after updates contains the node sequence (B/0, X/1, Y/2, C/3). Note
that the repeated insertion at position 2, starting with Y and following with
X, yields the desired sequence. (b) shows the state of the AUC before exe-
cution and includes some additional information. *Shifts” marks the number

2. Efficient Structural Bulk Updates 14

of tuple shifts and equals the size of the deleted or inserted tree respectively.
"Accumulated shifts’ simply accumulates the shifts in the direction of docu-
ment order. The 'first affected tuple’ column contains the lowest pre value
that is shifted as a consequence of the corresponding atomic update. The
value in brackets marks the first affected tuple including accumulated shifts,
which is needed to calculate pre™®” — pre®d. Atomic deletes affect the first
pre value on the following axis whereas inserts affect the pre value at their
insert location (as the tuple that resides there is shifted backwards).

1. ins(2,Y)
2. ins(2,X)
3. del(0)

0 1 2 0 1 2 3
DEL INS INS

(a) insertion / deletion in a node sequence

atomic first affected tuple accum. shifts shifts

del(0) 1 (0) -1 -1
ins(2,X) 2 (2) 0 1
ins(2,Y) 2 (3) 1 1

(b) corresponding AUC (in document order)

Figure 2.11: Mapping pre values.

The new pre value or pre®® — pre™ for a node in the unaltered table

is derived by identifying the update at the highest index in the AUC that
still affects this node. For example:

Acld _y Amew: Ag the lowest ‘first affected tuple’ equals 1, there is no map-
ping for node A. While the result is fine here, it can happen that a
node is deleted and the AUC still suggests a mapping. Yet, as we only
apply the map to existing nodes this is not a problem.

Bold _ Bnew: B has a pre value of 1. The atomic delete is the operation
with the highest index that still affects this pre value. Hence, the AUC
predicts an accumulated shift of -1, or 1 — (1 4 (—1)).

Cold — Ccmew: With a pre value of 2, the insertion of Y is the last update
that affects node C, it follows 2 — (2 + 1).

Calculating the original, untouched pre value via pre™® — pre®? for an

already shifted tuple works similarly. Eventual tuple shifts have to be taken
into account as the updates have already been applied. We are now looking

2. Efficient Structural Bulk Updates 15

(0,1)

(a) original (b) after in- (c) after distance
state serts w/ invalid adjustments (*)
distances (*)

Figure 2.12: Distance adjustments after node insertion.

for the pre value of the first affected tuple in brackets, as it already includes
the number of accumulated shifts.

Brew 5 Bold With a pre value of 0, the delete operation is the one we're
looking for. As the ’accumulated shifts’ value states the changes that
take place when updates are applied, the information has to be re-
versed. It follows that 0 — 1 as 0 — (—1) = 1.

Xnew _y xold With a pre value of 1, node X is only affected by the delete, it
follows 1 — 1 — (—1). This case shows that the mapping covers nodes
that are inserted within the process, too. Prior to insertion, node X
has not been a part of the table, yet it is inserted at position 2.

ynrew — yold Node Y is affected by the deletion of node A and the insertion
of node X. As the amount of shifts accumulates to 0 it follows that
2 — 2. The explanation is similar to X% — X°ld,

Cmev — ¢4 Node C is finally affected by all updates, hence the accumu-
lated shifts are found at the highest index of the AUC which results in
3—(3—-1).

Having gone through the examples we can make the following observa-
tion:

Observation 2 A bulk update serves as a bi-directional mapping between
the pre value of a tuple before and after the application of the bulk update.

2.3.3 Adjusting Distance Values Explicitly

In contrast to the naive approach, where the appropriate distances are ad-
justed after execution of each atomic update, it has been shown that delay-
ing these adjustments would save a considerable amount of operations and
is indeed possible. A bi-directional map between pre values before and after

2. Efficient Structural Bulk Updates 16

updates in form of the AUC is the foundation of explicit distance value ad-
justments. In section 2.3.1 it has been shown, that at some point, all atomic
updates have been carried out but the table is in a state that reflects all the
original distance values. As shown before, the parent of a node n is calcu-
lated in the manner n.par = n.pre — n.dist. We cannot find out directly how
the number of tuples changed between a node and its parent as we no longer
know the parent node. Consequently, we compute the updated distance for
any given node of the table via the original distance value and the AUC. A
simple example shows the way (figure 2.12).

1. In the first step (b), nodes Y and X are inserted at position 2 and
1, which shifts nodes C and B to the back. After the first step, the
distances of B and C are invalid as distance adjustments are delayed.

2. The distances of B and C represent the original state. With the map-
ping pre™®® — pre®'d, we get the old pre value 2 for C. Together with
C’s original distance, this also gives us the original parent B/1 of C as
(2 —1) = 1. Using the mapping in the other direction pred — preme®
gives us the new parent B/2. It follows that the updated distance of
node C is dist™" = (pre™* — par™") or 2 = (4 — 2).

Generally, the distance of any node in the database is adjusted starting
with the new pre value pre™©¥:

predd = pre™® — preld

parOZd _ pT@Old o d’iStOld
par™ = par®® — par"ev
dist"™ = pre" — par™"”

Observation 3 The new distance value of a node can be explicitly calculated
based on its original state and a bi-directional mapping of pre values before
and after updates.

2.3.4 Adjusting the Appropriate Distance Values

The last piece missing is to determine the set of distance values that have to
be adjusted after the application of atomic updates. This doesn’t work with-
out knowledge of the tree structure. As all the ’first’ tuples that are affected
by a structural update are known thanks to the AUC, the remaining distances
can be determined from there via ancestor-or-self- and following-sibling- axis-
steps. An additional set keeps track of nodes with already adjusted distances
to avoid repetition. As the number of distance adjustments is minimal, the
order of visiting the first affected tuples is more or less irrelevant.

Until now, we have used the ancestor-or-self and following-sibling axes
to describe the sequence of nodes which distances are affected relative to

2. Efficient Structural Bulk Updates 17

X+X.size

Figure 2.13: Accessing distances to update on-the-fly

(0,1)

(a) invalidation of distances after in- (b) final table w/ adjusted dis-
sertion (marked *) tances

atomic first affected tuple accum. shifts shifts

ins(2,X) 2 (3) 1 1
ins(5,Y) 5(7) 2

(¢) corresponding update cache in document order

Figure 2.14: Calculating the set of invalid distances.

the first affected tuple of an update. In a static environment, this is correct.
However, this sequence is determined on-the-fly as distance adjustments are
carried out. The next node is then either calculated via the following axis
relative to the current node or by switching to the next first affected tuple, if
the set of following nodes is empty. It is consequently no longer necessary to
access the parent axis, which should save a few operations (see 2.13). Again,
a small example illustrates the complete process in figure 2.14. To adjust
distances, the AUC is traversed in document order. A quick look at the first
affected tuple’ column shows that the starting point are nodes 3/C and 7/F.
Let S be the set of nodes that have been adjusted already.

3/C This is the first node for which the distance is adjusted (section 2.3.3).
From this point on the following node n is calculated directly via

2. Efficient Structural Bulk Updates 18

n.pre+n.size, which is repeated for the nodes (D, E, G). G.pre+G.size
equals the document size and ends the iteration. S now contains the
nodes {C, D, E, G} as their distances have been adjusted.

7/F Node F is the first node affected by the insertion of Y. Its distance is
updated and S = SU{F'}. F.pre+ F.size yields G as the next candi-
date. As G is already contained in S and there are no more unprocessed
atomics in the list, the adjustment of distances is finished.

Again, we can record another observation:

Observation 4 Distances that have to be adjusted are determined directly
via the table and the corresponding bulk update.

2.3.5 Constraints of the AUC

The AUC describes a sequence of atomic operations and is, due to the pre
references, tightly coupled with the corresponding table. For example, for
two insert operations at the same pre location, the application order directly
affects the document order. It is therefore necessary to define the sequence of
updates in a way that their application in reverse document order leads to the
desired result. This is kind of a soft constraint and left to the implementation.
Also, dealing with sequences of atomics that lead to ambiguous results (like
two renames of the same node, etc.) falls into this category.

Tree-Aware Updates

However, there are certain setups of the cache that interfere with the overall
concept of efficient distance adjustment. The given scenario (2.15) pictures
such a case. Node X is inserted into the subtree of B, hence incrementing
B.size to 3. The AUC is consequently no longer valid as it states a shift of
-2 for the deletion of node B. This is a general problem of the AUC but can
be solved conveniently:

1. Traverse the AUC in document order.

2. For each atomic delete, remove all structural updates that take place
in the subtree of the target node (B). As node B is deleted, the changes
in the subtree have no effect anyway.

After applying these steps to our example, the cache contains only the delete
operation and is again in a valid state. The procedure is called tree-aware
updates and has been introduced in [Kir10] to save superfluous operations in
a slightly different context. As the size of the AUC is eventually reduced, we
not only save I/O but also reduce the complexity of the pre value mapping
described in section 2.3.2.

2. Efficient Structural Bulk Updates 19

(a) tree with in-
sert, delete

atomic first affected tuple accum. shifts shifts

del(1) 3 (1) -2 -2
ins(3,X) 3(2) -1 1
(b) update cache

Figure 2.15: Invalidation of shifts due to update sequence.

Order of Insert and Delete

Another setup of the cache can lead to unwanted results due to the applica-
tion in reverse document order. If we consider an update sequence {del(p),
ins(p, Y)} and apply insert followed by delete, the inserted node Y would
be deleted straightaway. Also a soft constraint as it doesn’t break the over-
all concept, sequences like this should be avoided which is easily realized in
preprocessing.

2.4 Implementation of Efficient Structural Bulk Up-
dates

Given a theoretical solution for efficient structural bulk updates, it is rel-
atively simple to follow this with an implementation. An additional layer
in BaseX serves as update cache and provides a low-level interface to the
underlying table. We give the same name to this dedicated layer as to the
theoretical structure. The AUC also makes it possible to realize further op-
timizations that would have been very hard to implement beforehand. To
leverage efficient structural bulk updates, the process of an updating trans-
action consists of the following steps:

1. Filling the AUC with a sequence of updates.
2. Making sure that AUC constraint are satisfied.

3. Preparation of the cache with tree-aware updates and accumulation of
shifts etc.

2. Efficient Structural Bulk Updates 20

4. Application of the update sequence with delayed distance adjustments.
5. Adjustment of distances.

6. Resolution of text node adjacency and processing of the additional
AUC that results from text node deletions.

An actual AUC instance consists foremost of the two separate lists for struc-
tural updates (insert, delete) and value updates (rename, ...) sorted by loca-
tion in document order. Individual atomics have to be added in the proper
order which avoids ambiguities and is left to the layers using the AUC. Atom-
ics are implemented as objects and have the following fields:

field name description

location actual pre value where the update is applied

fpre pre value of the first tuple which distance is af-
fected

shifts number of introduced shifts

accum number of accumulated shifts over all atomics in
document order including shifts

insertion insertion sequence for insert atomics, stored as a

separate table instance

Filling of the AUC is very flexible and simple, therefore we won’t talk
about it in detail. The actual code examples start with the two lists for
structural and value updates already being filled. One thing noteworthy is
the fact that a few tasks can be carried-out on-the-fly if the cache is filled in
document order. Most of the cache preparation (accumulating shifts, tree-
aware updates), as well as the implementation of some constraints (order
of delete and insert, avoidance of ambiguous renames and replaces) fall into
this category. While the real-world implementation makes use of this, it is
not reflected in the presented pseudo code as it only saves a handful of linear
traversals and can be derived easily from the given solution. There is a num-
ber of other problems that are taken care of in the real-world implementation
which includes i.e. the treatment of attribute nodes and the realization of a
few other types of atomic updates like replace, etc. The code examples form
the base of the actual implementation and provide enough insight to derive
the remaining details.

ProcessBulkUpdate, algorithm 2.1

With the AUC already being filled, value updates are carried out first. This
avoids recalculating the update locations conversely to applying them after-
wards. Order is not important, yet in some cases it could be beneficial, with
regards to page access, to proceeded strictly in (reverse) document order.

2. Efficient Structural Bulk Updates 21

Algorithm 2.1: Processing a Bulk Update

1: PROCESSBULKUPDATE(S: Structural updates, V: Value updates)
2: forveV do

3: ApplyAtomic(v)

4 end for

Tree Aware Updates(S)

ApplyStructural Updates(S)

AdjustDistances(S)

Resolve TextAdjacency(S)
end

Structural updates are given in document order depending on the location
of the update. As stated before, some preparation of the AUC is necessary
before updates can be applied and distances adjusted. Resolving eventual
text node adjacency is an additional step which benefits from delayed dis-
tance adjustments but must be adapted accordingly.

TreeAwareUpdates, algorithm 2.2

Removing superfluous atomic updates not only reduces the size of the AUC,
but is necessary in some cases to re-validate it after all. The list of struc-
tural updates is again traversed in document order. Once we come across
a delete atomic there is potential for superfluous updates in the subtree of
the to-be-deleted node. To identify and get rid of these updates, one has to
distinguish between insert and delete atomics. Case I shows that an insert
can be removed from the list if its insert location does not exceed the di-
rectly following location after the end of the subtree and the new parent of
the inserted node resides on the descendant-or-self axis of the to-be-deleted
node. A delete operation can only be removed if its location is part of the
subtree (Case 2). If neither is the case, the search for the next delete atomic
is continued (Case 3).

ApplyStructuralUpdates, algorithm 2.3

To support mapping of old and new pre values, the amount of accumulated
shifts for each atomic update has to be determined. This is carried out in
document order and can be done on-the-fly if the cache is also filled in
document order. After preparation, the actual updates are finally applied in
reverse document order by the function ApplyAtomic(). Tuples are inserted
or deleted and resulting pre value shifts and size updates are taken care off.
Distance adjustments are delayed and carried out later by AdjustDistances().

2. Efficient Structural Bulk Updates 22

Algorithm 2.2: Preparation of the AUC (tree-aware updates)

1: TREEAWAREUPDATES(S: Structural updates)
2 140
3 while i < S.size do
4 if s; is delete atomic then
5: start = s;.location
6 end = start+TABLE.getSize(start)
7 141 +1
8 deleting < TRUE
9 while ¢ < S.size and deleting do
10: [< s;.location
11: if s; is insert atomic and | < end and start < TA-
BLE.getParent(l) < end then
> Case 1
12: drop s;
13: 14 1+1
14: else if | < end then > Case 2
15: drop s;
16: 141+1
17: else > Case 3
18: deleting < FALSE
19: end if
20: end while
21: else
22: 1 1+1
23: end if
24: end while
25: end
Algorithm 2.3: Application of structural updates
1: APPLYSTRUCTURALUPDATES(S: Structural updates)
2 a<+0
3 for i + 0, S.size do > calculate accumulated shifts
4 s;.accum = a + s;.shifts
5: a < a + s;.accum
6 end for
7 for ¢ + S.size,0 do
8 ApplyAtomic(s;)
9: end for

10: end

2. Efficient Structural Bulk Updates 23

Algorithm 2.4: Adjusting distance values

1: ADJUSTDISTANCES(S: Structural updates)

2 updated < () > set of already updated pre values
3 for s € S do

4 npre < s.fpre + s.accum

5: while npre < TABLE.size do

6 if npre ¢ updated then

7 odist <— TABLE.getDistance(npre)

8 opre < MapPre(S, npre, true)

9: opar < opre — odist

10: npar < MapPre(S, opar, false)
11: ndist < npre — npar

12: TABLE.setDistance(npre,ndist)

13: updated + updated U {npre}

14: npre <— npre+TABLE.getSize(npre)
15: end if

16: end while

17: end for

18: end

AdjustDistances, algorithm 2.4

To avoid touching the same distance values multiple times, the pre values of
the corresponding tuples are stored in a set. Adjusting distances now starts
with a traversal of the list of structural updates. Each structural update has
the field fpre that holds the pre value of the first tuple which distance is
affected. As updates have been applied already, the number of accumulated
shifts has to be taken into account, which gets us the new pre value npre.
Based on the old distance value of the tuple with pre npre and the old pre
value, the old parent is calculated. For the starting value of npre, the old pre
value equals s.fpre, hence accessing the mapping could be omitted (which is
not reflected in the given code). The old parent and the pre value mapping
gives the new distance value for npre, which is then propagated to the table
via TABLE.setDistance(). After adding npre to the set of already updated
nodes, the algorithm continues with the following node to cover all distances
that require adjustment.

MapPre, algorithm 2.5

The pre value mapping works in both directions: a new pre value, after
updates have been applied, can be passed as an argument to receive the
old pre value without the effects of shifting (isnew = TRUE). It can also be
used to get the new pre value if the argument isnew = FALSE. As shown
before, the pre mapping is based on the list of structural updates and the

2. Efficient Structural Bulk Updates 24

Algorithm 2.5: Mapping pre values before and after updates

1. MAPPRE(S: Structural updates, pre: Integer, isnew: Boolean)

2 i < Find(S, pre,isnew)

3 if isnew then > pree? — preld
4 val < s;.fpre + s;.accum

5: 1+ 1+1

6 while i < S.size and s;.fpre + s;.accum = val do

7 1 i+1

8 end while

9: return pre — s;_1.accum

10: else > predld — prenew
11: val < s;.fpre

12: 14— 1+1

13: while i < S.size and s;.fpre = val do

14: 1 1+1

15: end while

16: return pre 4+ s;_1.accum

17: end if

18: end

pre values of the first affected tuple fpre of each atomic. The mapping is
divided into two steps: a rough binary search that stops once it hits an
atomic update where fpre = pre and returns the index of it (Find()). If
there is no such atomic, it returns the index of the one with the biggest fpre
while fpre < pre. Find() of course takes into account whether it is given
a new or old pre value. If given a new pre value, comparison is based on
fpre+ accum for each atomic. For an old pre value, comparison is based on
fpre only. The rough search is followed by fine-tuning the initial result, as
it may be possible that a sequence of atomic updates affects the same tuple
and therefore has the same value for fpre (imagine i.e. a sequence of inserts
at the same location). The atomic to find is the one with the highest index,
as this reflects the accumulated changes. It is found by linearly scanning
the list. The two cases for mapping directions are distinguished in the same
manner as for Find() and shown separately for clarity. In both cases, once the
appropriate atomic update is found, the pre value is recalculated accordingly
by either subtracting or adding the number of accumulated shifts.

ResolveText Adjacency, algorithm 2.6

Up to now, the discussion evolved solely around the element node type.
However, text nodes cannot be left out of the equation, as they require a
non-trivial special treatment. Adjacent sibling text nodes can occur if a node
that separates two text nodes with the same parent is deleted, or if a text

2. Efficient Structural Bulk Updates 25

Algorithm 2.6: Resolving text node adjacency

1: RESOLVETEXTADJACENCY(S: Structural updates)

2 deletes <) > cached atomic deletes
3 smallestVisited < oo > tracks visited locations
4 for i + S.size,0 do > Stage 2
5: [+ s;.location + s;.accum — s;.shifts

6 if s; is insert atomic then

7 a < |+ s;.insertion.size — 1

8 if a < smallestVisited then

9: deletes < concat(MergeTexts(a), deletes)

10: smallestVisited < a

11: end if

12: end if

13: b—1-1

14: if b < smallestVisited then

15: deletes < concat(MergeTexts(b), deletes)

16: smallestVisited < b

17: end if

18: end for

19: ApplyStructuralUpdates(deletes) > Stage 3
20: AdjustDistances(deletes)
21: end

Algorithm 2.7: Merging adjacent sibling text nodes

MERGETEXTS(a: Integer)
b+<—a+1
if a or b leave the table boundaries or are no text nodes then
return ()
end if
TABLE.setText(a, concat(TABLE.getText(a), TABLE.qgetText(b))
return atomic delete of b
end

node is inserted as a sibling of an existing text node. In either case, texts
have to be merged as the XQuery Data Model [FMM™07] forbids adjacency.
With the implementation of the XQuery Update Facility in BaseX came an
algorithm that solved this problem on a higher level. The values of two text
nodes are concatenated in one of the two nodes and the other one is deleted.
As this operation leads to structural changes, the concept of delayed distance
updates can be applied as well. The algorithm to resolve text node adjacency
has to be revised as a consequence. Three little examples are given for deletes,

2. Efficient Structural Bulk Updates 26

(0) (0) (0)
4] 2) 1) @) M
‘b’ ‘d’ Lbd’ :d7 ‘bd’
(a) tree after dele- (b) tree after (c) tree after delet-
tion of C (Stage 1) text concatenation ing superfluous text
(Stage 2) nodes (Stage 3)

Figure 2.16: Example 1: Merging of text nodes after delete.

inserts, and for a combination of the two, to show how text concatenation is
propagated. The algorithm can be broken down into three distinct stages:

Stage 1 Application of atomic updates and distance adjustments.
Stage 2 Creation of final text nodes by concatenating adjacent texts.

Stage 3 Deletion of the left-over superfluous text nodes of stage 2 and ad-
justment of distances.

Eventual text node adjacency after deletes is discovered and resolved eas-
ily, see figure 2.16. As shown in algorithm 2.6, the update cache is traversed
in reverse document order, as this shows us the locations for potential adja-
cency. A list deletes tracks the nodes that have to be removed during stage
3. The variable smallestVisited tracks the lowest pre value that has already
been tested for adjacency. In the given example, node C is deleted from the
tree, the update cache consequently holds a single atomic s with s.location
= 2, s.fpre = 83, s.shifts = -1, s.accum = -1. First the location [, where ad-
jacency can occur, is directly derived from s, in this case [+ 2 —1+4+1 = 2.
As there is only one potential location for text adjacency directly before
the deleted node, the function MergeTexts() has to be called once for po-
sition b <— [— 1. This function merges the node at the given position and
the first following sibling if possible, by directly concatenating their texts in
the correct order (setText()). It returns a delete atomic for the second node
which is added to the first position of the deletes list to be executed later
during stage 3. As the AUC holds one atomic, stage 2 is already finished.
Deleting the superfluous text node with text content ’d’ is carried out by the
already presented function ApplyStructuralUpdates(). Distances are adjusted
as usual. Some pre-processing steps for distance adjustment can be skipped.
L.e. applying TreeAwareUpdate() isn’t necessary as text nodes don’t have any
descendants.

Figure 2.17 shows an example where a sequence of three nodes is inserted
with a single atomic insert. Consequently, the AUC holds the atomic insert

2. Efficient Structural Bulk Updates 27

(a) tree after insertion of (b) tree after text concate-
the node sequence ('x’,Y,’z’). nation (Stage 2)
(Stage 1)

Figure 2.17: Example 2: Merging of text nodes after insert. Stage 3 not
displayed.

(a) tree after (b) tree after text
ins(3,’x’) and del(2). concatenation (Stage
(Stage 1) 2)

Figure 2.18: Example 3: Merging of text nodes after combined delete and
insert. Stage 3 not displayed.

s with s.location = 2, s.fpre = 2, s.shifts = 8, s.accum = 8. The size of
the insertion sequence equals 3 and consists of a text node followed by an
element, followed by a text node. Insertion sequences are always ’clean’,
which means no adjacent text nodes are to be expected as these would have
been merged beforehand. The example focuses on the special case where two
text node merges are necessary due to a single insert operation. Algorithm
2.6 covers this case by checking the position at the end of the insertion
sequence for adjacency. In the given case, [< 2, which leads to a « [+
3 — 1 =4. Calling MergeTexts(4) takes care of the first case of adjacency. It
is important to check locations strictly in reverse document order to avoid
incorrect concatenation and wrong order of the resulting delete atomics. The
second check at location [—1 = 1 follows and leads to another concatenation
and delete atomic. The resulting and temporary AUC now holds the two
atomics (del(2), del(5)). Stage 3 is not explained here as it strictly follows
the first example.

Example 3 (figure 2.18) shows, through a combination of insert and
delete, how the algorithm propagates text concatenation to achieve the de-
sired result. After stage 2, deletes contains the update sequence (del(2),
del(3)) and is processed accordingly.

2. Efficient Structural Bulk Updates 28

2.5 Related Optimizations

2.5.1 Replaces

Up to now, we singularly talked about insert and delete atomics. Being a
conglomerate of delete and insert, replaces are arguably not an ’atomic’
type itself. Yet, implementation-wise they help to realize a few important
optimizations. To explain them properly, it is important to know about some
storage internals of BaseX. We cover the basics here and leave details to
Griin’s thesis |Gr0].

Logical Pages

In contrast to being stored in a contiguous file, the table in BaseX is divided
into logical pages. A page currently holds up to 256 tuples. To keep track
of the document, a main memory directory remembers the location and
sequence of pages, the first pre value on each page and the number of tuples
in a page. Free space is only allowed after all tuples on a page, hence no
gaps between tuples or at the start of a page. In short, the main purpose of
this setup is to reduce I/O costs if tuples are inserted or deleted, as tuple
shifts are restricted to the tuples on the same page. Another reason is, that
it allows for some basic buffering mechanisms, where a page is i.e. completely
loaded and then altered in main memory before being flushed to disk.

Text Value Storage

To enable a fixed length encoding of the different node types in BaseX, text
and attribute values are only referenced by an offset and not directly stored
in the table. The actual values reside in sequential files on disk. In case of
frequent updates, the structure of these files degenerates, as new entries are
only appended to the existing files and no overwriting takes place. Currently,
there is no structure that keeps track of empty space, hence an increase in
size and fragmentation is the consequence if values are frequently removed,
added or re-inserted.

Basic & Rapid Replace
A basic replace operation r is carried out in BaseX as follows:

e The node at r.location is deleted, which is consequently followed by a
shift of all tuples with a pre value greater or equal r.fpre.

e The replacing sequence is inserted at r.location, which again leads to
a shift of the following tuples.

While this approach may look inefficient on paper, it is considered ’safe’,
as it reduces the complexity of a replace considerably if the source or target

2. Efficient Structural Bulk Updates 29

table contain namespaces. Yet, the basic replace obviously leads to a number
of problems:

e An excessive amount of I/O in general, as the same tuples are shifted
twice. Costs are albeit bounded due to paging strategies.

e A potentially unnecessary increase in size and fragmentation of the
files on disk that contain text and attribute values. In a real-world
application, it might very well be the case that the replacing subtree
differs very little from the deleted one and a simple and cheap value
update might be enough to resolve this.

e Wearing out the space of possible IDs for future nodes due to the same
reasons as above.

In addition to the naive basic replace, two more advanced approaches have
been realized to fight fragmentation and a waste of I/O. The first is the lazy
replace, which tries to substitute the structural replace operation with cheap
value updates. This comes in handy if the replaced and replacing subtrees
feature the same structure in general. The second we call rapid replace, which
directly overrides entries in the table (see the section on future work in [Kir10]
for the basic algorithm). Following tuples and the according pages are then
only touched once, which not only saves a considerable amount of I/O but
also reduces fragmentation.

Lazy Replace

The lazy replace compares the to-be-deleted node with the replacing inser-
tion sequence. If they are topologically identical, a sequence of value updates
suffices. The implementation is very straightforward as it simply requires a
sequential and pair-wise comparison of the tuples in the source and des-
tination table (algorithm 2.8), which shows the relevant snippet in Apply-
Atomic(). The final protocol for applying replace atomics is now divided into
three stages:

1. If there are no namespaces to be dealt with, it is first checked whether a
lazy replace would be sufficient. In this case, value updates are collected
and applied at the end (Case 1). They cannot be applied on-the-fly as
the process might still be aborted.

2. In case the lazy replace fails because of necessary structural changes,
a rapid replace is leveraged (Case 2).

3. If namespaces are contained in either the source or target table, a
basic replace is applied by deletion of the target node and subsequent
insertion at the same location (Case 3).

2. Efficient Structural Bulk Updates 30

Algorithm 2.8: Application of atomic update

1:
2:

10:
11:
12:
13:
14:

15:
16:

17:
18:
19:
20:
21:
22:
23:

24:
25:
26:

27:
28:
29:
30:
31: end

APPLYATOMIC(s: atomic update)

> eventually process other atomic types

if s is a replace atomic then
if there are no namespaces in TABLE and s.insertion then

insSize < s.insertion.size
if insSize # TABLE.getSize(s.location) then
failed <+ TRUE
else
failed < FALSE
end if
valueUpdates < ()
140
while ¢ < insSize and not failed do
if tuples insertion.t;, TABLE.t; differ in either kind, dis-
tance or size then
failed < TRUE
else if tuples insertion.t;, TABLE.t; only differ in value
then
add appropriate value update to valueUpdates
end if
141+1
end while
for v € valueUpdates do > Case 1
ApplyAtomic(v)
end for

if failed then > Case 2
run rapid replace ...
end if

else > Case 3

run basic replace ...

end if

While the lazy replace looks expensive on paper, as a possibly huge sub-

tree is first traversed and then potentially replaced anyway, performance tests
showed that the actual worst-case overhead remains small. In case the lazy
replace fails, a rapid replace makes up for it easily as it is naturally faster

2. Efficient Structural Bulk Updates 31

than the basic approach. In the end, it is well worth the effort to reduce both
fragmentation and file size on disk. A direct comparison is found in chapter
4.

2.5.2 Merging Atomic Updates

Reducing the number of structural atomics naturally reduces the complexity
of updates. While this is more or less obvious, there is a number of advantages
that don’t stand out as clear. For example, replace optimizations are lever-
aged more often with an increasing number of replace atomics, which can be
achieved by merging neighbouring inserts and deletes. Merging neighbour-
ing inserts into one operation could additionally reduce I/O due to buffer
strategies on page level. Going into details about buffer strategies is beyond
the scope of this work. Therefore we limit this section to the important facts
about merging of structural atomics. Two atomic updates a and b can be
merged if they fulfill certain conditions:

e a and b are directly adjacent regarding their location. Merging i.e. an
insert at location x with an insert at location z + 1 does not work as
the inserted sequences are not adjacent.

e ¢ and b work under the same parent node.
e ¢ and b adhere to the order constraints of the AUC.

At the moment, there are two distinct cases where an insert and delete
operation are substituted with a replace. The two atomics are given in doc-
ument order with regards to the location.

(ins(x), del(x)) — rep(x)
For an insert ¢ at location z and a delete d at the same location in the given
order, a substituting replace is set-up as follows:

Replace: i.location, d.fpre, i.shifts+d.shifts, d.accum, i.insertion

The field accum is directly derived from the delete atomic as it already
contains the correct value.

(del(x), ins(x+1)) — rep(x)
For a delete d at location = and an insert ¢ at x 4+ 1, a substituting replace
is set-up as follows:

Replace: d.location, d.fpre, i.shifts+d.shifts, ins.accum, i.insertion

Again the field accum is directly derived from the insert, as it already con-
tains the shifts of the delete. As stated before, merging atomics is part of

2. Efficient Structural Bulk Updates 32

update cache preparation and can be carried out on the fly. Consequently, it
does not add any considerable overhead.

A number of potential merges exist that are covered, but not yet im-
plemented. The reasons are strictly implementation dependent and evolve
around the merging of insertion sequences. An insert sequence for an in-
sert or replace atomic in BaseX is stored in a temporary table. This table
serves as a container for all insertion sequences that are currently in the up-
date cache, yet sequences are unordered. While this is an efficient concept
in general, it complicates the merging of insertion sequences. Reordering the
sequences explicitly is out of the question, so the introduction of a mapping,
to restore the order might be worthwhile to look into. It remains to find out
whether the gains are worth the effort. If efforts are made in this direction,
there are three potential merges to be implemented:

(ins(x), ins(x)) — ins(x)
For two inserts i1 at & and iy at x substitution is set-up as follows:

Insert: iy.location, iy.fpre, iy.shifts+iy.shifts, ia.accum, concat(iy.insertion,
i9.insertion)

(rep(x), ins(x+1)) — rep(x)
For a replace r at x and an insert ¢ at x + 1 substitution is set-up as follows:

Replace: r.location, r.fpre, r.shifts+i.shifts, i.accum, concat(r.insertion,
i.insertion)

(ins(x), rep(x)) — rep(x)
For an insert ¢ at x and a replace r at x substitution is set-up as follows:

Replace: r.location, r.fpre, r.shifts+i.shifts, r.accum, concat(i.insertion,
r.insertion)

Insertion sequences must be merged with regards to the desired document
order. Between the end of the first and the beginning of the second insertion
sequence, there is potential for text node adjacency which has to be resolved
somehow.

2.6 Future Work

2.6.1 Delayed Distance Updates Based On ID-PRE Mapping

Interestingly, the whole concept of efficient bulk updates focuses entirely on
pre values and their tedious re-calculation, as they are used as identifiers but
ultimately underly changes during the updating process. So why not base
it all on a fixed identifier instead? Each node or tuple in BaseX features

2. Efficient Structural Bulk Updates 33

indeed an id, that is both unique and static. One reason to work without
it is that there has been no efficient mapping between id and pre values,
which changed some time ago with the introduction of a structure tailored
to the current table encoding by Popov [Pop12|. This structure tracks the
changes of pre values after updates in an efficient manner. The following
section sketches a solution for efficient bulk updates based on Popov’s ID-
PRFE map and subsequently shows why the already presented solution is still
preferable.

Algorithm 2.9: Delayed Distance Updates based on Id-Pre Mapping

1: PROCESSBULKUPDATEIDPRE(S: Structural updates)

2 toAdjust < () > tracks tuples (parentID, childID)
3 for s € S do

4 pID < getParentld(s.fpre)

5: if s is an atomic insert then > Case ’insert’
6 toAdjust < toAdjust U (pID, calcFutureld(S,s))

7 end if

8 for f < s.fpre, TABLE.size - 1 do > iterate following nodes
9: toAdjust < toAdjust U (getParentld(f), getld(f))

10: f <« f+ getSize(f)

11: end for

12: end for

13: ApplyStructural Updates(S)
14: for t € toAdjust do

15: cpre < getPre(t.childID) > ID-PRE map
16: cdist < cpre - getPre(t.parentID) > ID-PRE map
17: setDistance(cpre, cdist)

18: end for

19: (take care of text node adjacency ...)

20: end

ProcessBulkUpdateldPre, algorithm 2.9

There are some differences between the ’standard’ version and delayed dis-
tance updates based on the ID-PRE map. Algorithm 2.9 sketches the general
approach. Value updates are left out of the discussion as they can simply be
applied beforehand without taking special care. To leverage the mapping, the
basic idea is to store pairs of child and parent ids (childID,parentID) prior
to the application of updates for each child node that needs to be adjusted.
By mapping the ids to pre values and calculating the difference we can af-
terwards adjust distances directly. Pairs are stored in the structure toAdjust.

2. Efficient Structural Bulk Updates 34

Implementing it as a map with the childID as a key avoids duplicate entries
in O(1). Distances that need to be updated are again determined based on
the cache of structural atomic updates. For each of these atomic updates,
the id of the first affected tuple and the parent of this tuple is to be found.
Calculating the parent id is trivial.

However, in case of an insert operation, an extra step is required to
find the value for the child id. As, during an insert, a new tuple is added
to the table that could eventually be shifted later on by updates further
up the table, it has to be tracked. As its id is not yet readily available, it
has to be pre-calculated based on the AUC. More specifically, by traversing
the AUC in reverse document order and assigning 'future’ ids to all insertion
sequences, the actual future id can be determined. This is left to the function
calcFutureld(). After this step, a new tuple (childID,parentID) is added to the
record. At this point, the given algorithm spares two details: If a sequence
of nodes is inserted, an id tuple has to be added for each of these nodes.
Secondly, it is possible to determine whether tracking of an inserted node is
needed after all by searching the AUC for eventual changes in the interval
[n.par + 1, n.pre]. Both tasks can be carried out efficiently.

After taking care of the special situation regarding inserts, the remaining
ids that are influenced by the update have to be collected. This is again real-
ized by iteratively calculating the following node and adding the appropriate
id tuple to the list. The application of structural updates is then carried out
the same way as the actually implemented solution.

Adjusting the actual distances then becomes trivial. The tuples collected
in toAdjust are traversed and the distance of the node with id childID is up-
dated by calculating the distance of the child and parent pre values. Lever-
aging the ID-PRE map leaves us with the appropriate pre values. Resolving
eventual text node adjacency is carried out accordingly.

At the moment, the main disadvantages of delayed distance adjustments
based on the ID-PRE map are:

e Instead of one integer as reference for each distance that has to be up-
dated, a tuple of parent and child ids has to be determined in advance.
This increases the main memory complexity by a constant factor and
is therefore negligible.

e In addition, a tuple has to be stored for each node that is inserted dur-
ing a query, as its distance could be invalidated by structural changes.
Naively, the number of additional tuples equals the number of inserted
nodes, but this can eventually be reduced by scanning the AUC for
structural changes in the interval between the insert location and its
parent.

e A future id has to be calculated for each inserted node. Adding this

2. Efficient Structural Bulk Updates 35

information to the AUC can be realized by a single linear traversal in
reverse document order during preparation.

e Lookup complexity of the ID-PRE map is relative to all updates ever
applied to a database, which can be a considerable amount. In contrast,
mapping old and new pre values based on the AUC yields a complexity
relative to the current set of updates. However, this drawback might
prove to be not as dramatic, as ids in the table could be reseted peri-
odically to optimize the ID-PRE map. Of course, this depends on the
size of the database and usage patterns.

It is obvious that, at the current state of affairs, a solution based on the ID-
PRE map is not preferable. Depending on the future development of BaseX
this might be subject to change. In this case, the discussed solution can serve
as a stepping stone towards a complete implementation.

2.6.2 Memory Consumption of Distance Tracking

Part of the algorithm to adjust the distances is a set that tracks already
updated nodes to avoid repetition. For a use case like the one shown in
figure 2.8, this set can almost grow to the size of the database, which is,
of course, undesirable. As each entry is realized with an integer, the real-
life costs remain manageable (=~ 380MB for 100 * 10° distance updates),
especially if one takes into account that pre values are also represented by
integers. Yet, it would be nice to find a more compact structure in the future.
A solution needs to bring at least some knowledge about the tree structure
and it remains to find out whether the time needed to update this knowledge
justifies the savings of memory.

2.6.3 Speed-up of Pre?? < Premev

Currently, the mapping between pre values before and after updates is di-
vided into two steps. First, a logarithmic search tries to find the atomic
update with the appropriate fpre field. As there could be several of them,
a linear search scans the following positions in the cache to find the atomic
with the highest index. The pre mapping is leveraged twice for each dis-
tance adjustment. Depending on the transaction and document structure,
the number of calls could be enormous and a reduction in processing time
might pay off. Typical tests with XMark documents showed that the map-
ping consumes up to 10% of the total processing time. Although the gains
are by no means substantial, there are a few simple tweaks adding little
overhead.

As the list of atomic updates is ordered and minimum and maximum
values for fpre over all atomics are readily available, switching binary search
for an interpolation search could already shave of some time. Adding an

2. Efficient Structural Bulk Updates 36

additional field to each atomic update that already holds the index of the
atomic with the same fpre field at the highest position, ultimately renders
the linear search superfluous. Assigning the appropriate indexes is easily
realized during pre-processing by traversing the AUC in reverse document
order. This would especially speed up situations where a large number of
atomics affect the same following node.

2.6.4 Caching Insertion Sequences

During an updating transaction, main memory is not only consumed by the
basic structures of update caching, but especially insertion sequences can
consume huge amounts of memory depending on the use case. On one hand,
a single insertion can already exceed the main memory limits if the inserted
tree is big enough. On the other hand, inserting an identical sequence of
nodes into a large number of targets wastes space as well, as each individual
instance is cached separately. If the main memory limit is exceeded, the
only solution is to split the single transaction into a series of smaller ones.
As this is very tedious or potentially impossible, there are better ways to
solve this by shifting the effort from the user to the implementation, or to
simplify it at least. A first step would be to cache insertion sequences on disk
instead of main memory. Secondly, replicating identical insertion sequences
should be avoided altogether. Of course, moving caching entirely to disk is as
unfeasible as comparing the complete set of insertion sequences for equality.
Providing a dedicated interface, either via XQuery or on a lower level, could
be a worthwhile compromise and enables the user to activate it on demand.

3 Leveraging Efficient Bulk Up-
dates with the XQuery Up-
date Facility

The XQuery Update Facility [CDFT09] is a part of BaseX since version 6.0
has been released in 2010. Continuous feedback of the user community en-
couraged us to speed up transactions with the implementation of efficient
structural bulk updates. Although efficient bulk updates can be leveraged
from all over BaseX, XQuery Update, as the main interface to manipu-
late XML data, benefits the most. While the implementation is relatively
straightforward and realized by the lean AUC layer, it cannot be used di-
rectly by the Update Facility. This is due to the AUC order constraint, where
atomic updates are applied in reverse document order (section 2.2.5), restric-
tions by the specification and the fact that the order of statements in the
actual query is exchangeable. A basic example visualises the main problem to
be solved in order to leverage efficient structural bulk updates with XQuery
Update. Given the following query and input document in figure 3.1, how do
we fill the AUC in a way that the final result looks as expected?

delete node /A/B, insert node <Y/> after /A/B,
insert node <X/> as first into /A

(0) (0)

(A) (A)
) CRG @\
& © » O ©

(a) tree before (b) expected
snapshot result after
snapshot

Figure 3.1: XQuery Update example.

37

3. Leveraging Efficient Bulk Updates with the XQuery Update Facility 38

3.1 From Update Primitives to Atomic Updates

A more detailed introduction to the XQUF and the concepts of the pending
update list (PUL) and its primitives is given in [Kir10|. Using XQuery Update
statements within a query, each individual statement leads to one or several
update primitives. The PUL caches these primitives to apply them all in a
bulk operation at the end of the query - or snapshot. Among others, this
serves several purposes:

e Changes introduced during a snapshot are only visible in succeeding
queries.

e Update primitives can be applied in a specific order defined by the
Update Facility to resolve ambiguities.

e Insertion sequences (for insert, replace, etc.) are cached to avoid dirty
reads.

Before a PUL can be made effective, the update primitives have to be added
as atomics to the AUC. As learned before, the order of structural updates
within the AUC is of utmost importance.

3.1.1 Update Primitives and Target Nodes

Each update primitive is aimed at a target node. The target of a delete
primitive is the node which is deleted in the end. Remember the location field
of the atomic updates in the AUC. While the target pre value for a delete
primitive equals the location pre value, there are several primitives where this
is not the case. Figure 3.2 shows the different types of primitives implemented
in BaseX, together with their ranks and the calculation of update locations
depending on the target node. Detailed explanations of location and rank
are found below.

Location

The location value equals the target only for primitives with a rank smaller
than 7. For these, updates are applied directly to the target node. For prim-
itives with a rank greater 6, the location must be re-calculated as it is only
relative to the target value. For an insert into as first statement, the given
insertion sequence is added directly after the attribute nodes of the target.
The number of attributes must consequently be added to the target value
to determine the appropriate location. The last 3 primitives add insertion
sequences directly at the following position of the target node.

Rank
The rank is directly derived from the type of the primitive and the location

3. Leveraging Efficient Bulk Updates with the XQuery Update Facility 39

primitive rank location
insert before 1 target

delete 2 target
replace 3 target
rename 4 target
replace value 5 target

insert attribute 6 target

insert into as first 7 target + targetAttSize
insert into 8 target + targetSize
insert into as last 9 target + targetSize

insert after 10 target + targetSize

Figure 3.2: Order or update primitives and calculation of location relative
to target.

of the update. If we want to update a target ¢, the higher the location value
of a primitive is, the higher its rank. If we apply an insert before and an
insert after to the same target, the insert after must be applied first due
to the the application order of the AUC. All in all, ranks are assigned in
a way that the result of a query is always consistent with the requirements
of the specification. For primitives with a rank greater 7 this is especially
important as they all access the same location, yet the final order of the
insertion sequences is of great importance. For primitives with a rank smaller
than 7 the ranks are chosen accordingly.

3.1.2 Order of Update Primitives

Having determined the rank and location of update primitives, we can finally
order them in way that not only satisfies the constraints of the AUC, but
also yields the desired result. To impose an order to a list of objects, one
only has to be able to compare them pair-wise. To determine the greater one
of two given primitives (the one that has to be applied first), comparison is
based on location, target and rank. Unfortunately, it is not enough to solely
base comparison on target, location or rank alone. Algorithm 3.1 shows the
implementation of a comparator for update primitives based on the Java
Comparator ! interface.

Calling Compare(a,b), the function compares the second argument b to
the first argument a. If a is greater it returns 1, if a is smaller it returns —1,
if no clear decision can be made, the return value is 0.

http://docs.oracle.com/javase/7/docs/api/java/util/Comparator.html, 01.10.2013

3. Leveraging Efficient Bulk Updates with the XQuery Update Facility 40
Algorithm 3.1: Comparing two Update Primitives
1: CoMPARE(a: Update Primitive, b: Update Primitive)
2: determine a.location,b.location..
3: if a.location > b.location then > Case 1
4: return 1
5: end if
6: if b.location > a.location then
7 return -1
8: end if
9: if a.location > b.target and a.target < b.target then > Case 2
10: return 1
11: end if
12: if b.location > a.target and b.target < a.target then
13: return -1
14: end if
15: if a.target > b.target then > Case 3
16: return 1
17: end if
18: if b.target > a.target then
19: return -1
20: end if
21: if a.rank > b.rank then > Case 4
22: return 1
23: end if
24: if b.rank > a.rank then
25: return -1
26: end if
27: end

First, the location fields of the two given update primitives have to be

determined, as this is the most important property for ordering. Locations
are calculated based on type and target as shown in figure 3.2. Afterwards,
there are four distinct cases that take care of all possible combinations of
primitives:

e (ase 1 makes sure that primitives, that operate at different locations
of the table, are ordered correctly.

e (lase 2 orders primitives correctly that operate at the same table lo-
cation, with one of them operating within the subtree of the other.

3. Leveraging Efficient Bulk Updates with the XQuery Update Facility 41

e (lase 3 orders primitives at the same location but with different target
nodes.

e (Clase 4 finally orders primitives of a different type that operate both
on the same target node.

Case 1

If location values of @ and b already differ, deciding on an order is simple. As
the AUC is filled in document order, the primitive with the greater location
value has to be applied first and 'wins’ the comparison.

Case 2

If location values are equal, it is determined whether one of the two update
primitives "happens’ in the subtree of the other. An example with two insert
into statements visualises the case:

insert node <Y/> into /A,
insert node <X/> into /A/B

(a) query

(b) tree

Figure 3.3: Primitive ordering: Case 2.

Let’s consider primitive a inserts X into B and primitive b inserts Y
into A. Both primitives want to add the new nodes at the same location,
hence a.location = b.location = 3. Consequently, Case 1 is skipped. For each
insertion sequence, to end up at the right location under the appropriate
parent, primitive b must be applied first. In the given case, the update of
primitive a takes place in the subtree of b.target as it meets the conditions
b.location > a.target and b.target < a.target. Node Y has to end up after X
and is therefore inserted first, which is achieved by the ordering (b, a). The
example evolves around statements of type insert into, yet the same applies
to the types insert into as last and insert after.

Case 3
The target value can potentially settle the comparison if Case 1 and Case 2
do not apply, which is the case for the next example:

3. Leveraging Efficient Bulk Updates with the XQuery Update Facility 42

insert node <X/> after /A/B,
insert node <Y/> before /A/C

(a) query

Figure 3.4: Primitive ordering: Case 3.

Primitive a inserts X after B and b inserts Y before C. (a, b) represents
the final order as b.target > a.target b.

Case 4

If finally even the targets of both primitives are the same, a final decision
is made based on the rank. For example, this is the case if the two given
primitives operate on the same target node with one of them being a rename
and the other one a delete primitive. To not violate the specification, the
delete is applied after the rename which is directly reflected in the assignment
of ranks.

Comparator Properties

There are three important properties to guarantee for a valid comparator.
The function sgn() is an abbreviation of the mathematical signum function
and returns 1 if the argument is greater 0, 0 if the argument is 0 and -1 if
the argument is smaller 0. The three properties are as follows:

sgn(compare(z,y)) = —sgn(compare(y,x)) (3.1)

compare(z,y) A compare(y,z) => compare(x, z) (3.2)

compare(x,y) =0 = sgn(compare(x, z)) = sgn(compare(y, z)), ¥z (3.3)

We will not provide any proofs, yet we are sure that all the constraints are
met. If we switch arguments when calling the compare function we get the
opposite result, hence an identical ordering. The second property, transi-
tivity, is fulfilled as it is directly reflected in the hierarchical nature of the
decision process. The last property is only met in theory, as there will never
be a case where two identical primitives are compared. Comparisons based
on location, target and rank yield a clear result without exception, as the
XQuery Update Facility module already sorts out the issue of duplicates on
a higher level.

4 Performance of Efficient Bulk
Updates

Up to now, chapter 2 introduced us to the general performance drawback of
structural bulk updates. It has been shown how the problem can be solved
in theory and in practice by implementation of the AUC. We then talked
about the necessary adjustments to the XQuery Update Facility module in
chapter 3 to finally leverage efficient structural bulk updates. Looking at
the theoretical part of this work it is already clear that explicit distance
adjustment might reduce processing time by magnitude. However, as new
time and memory overhead occurs naturally, it is important to find out how
much of the potential advantage is conserved after all.

This chapter is divided into four parts. The first part shows the general
setup of performance tests. The second part compares a version of BaseX
without efficient structural bulk updates with an up-to-date version. A third
part takes a closer look at the perfomance of the three replace strategies
basic, lazy & rapid and their overhead. We conclude with a discussion on
the memory consumption of our optimization.

4.1 Setup

All performance tests are based on the XMark XML benchmark project
[SWKT02|. Using XMark documents helps to get an idea for performance
in real-world scenarios and is therefore chosen over a synthetic test of the
individual low-level layers. Although queries have already been defined and
are widely used, we define our own, as XQuery Update is not covered by
the test suite. Yet, the documents are created with the XMark document
generator. Scaling factors, sizes, number of nodes in the table, number of
date elements and the size of the people element subtree are shown in figure
4.1. Commodity hardware used for testing is shown in figure 4.2.

In general, the bulk-query and replace scenarios are run in the same
way. Each combination of query and document is tested several times, until
no significant decline of processing time can be noted. The fastest recorded
processing time wins. A fresh, thus defragmented database is created for each

43

4. Performance of Efficient Bulk Updates 44

factor size nodes date elements people size
0.01 1 MB 3.3x%10% 1.0 % 103 5.2 % 103
0.10 11 MB 3.2%10° 9.2 %103 5.0 % 10*
1.00 116 MB 3.2 %106 9.0 % 104 5.1 % 10°
10.00 1167 MB 3.2 % 107 9.0 % 10° 5.1 % 109
100.00 11670 MB 3.2 % 10% 9.0 108 5.1 %107

Figure 4.1: XMark test documents statistics.

cpu memory disk 0s java
Core i3 3.2GHz, 64bit 8GB 999 GB O0OS X 10.8.4 Oracle v7ul2

Figure 4.2: Hardware used for testing (2010 Apple iMac).

query. The number of executed runs depends on the size of the document.
For the smaller documents (1MB, 11MB) this equals 20 runs, for the 116MB
document 10 runs and for the two biggest documents 5 and 3 runs. Although
the answering time for the two tested versions of BaseX varies greatly, the
number of runs remains the same to ensure equity.

We test the corresponding BaseX standalone versions and increase the
heap size to 6GB (-Xmz6G). For the 11.7GB document the text and attribute
indexes of BaseX are deactivated to not exceed the memory limits. No options
are changed apart from this.

4.2 Bulk Queries

We use the <date> element as the target for bulk queries, as it is well spread
over the complete XMark document and can be found at the beginning, in
the middle and at the end. It consists of the element node itself and contains a
single text node as a child. Three queries compare the performance between
BaseX 7.3 and BaseX 7.7, from now on referred to as v73 and v77. The
individual queries and results are listed and discussed in figures 4.3, 4.4 and
the following paragraph. Value updates are not shown in the diagram as we
focus on the efficiency of structural bulk updates.

Q1: Value updates
for $d in //date/text() return
replace value of node $d with 99.99.9999

Although value updates are not part of the optimization, the comparison
shows at least that there is no significant difference between the two tested
versions. Overhead for v77 with efficient bulk updates seems to be kept at

4. Performance of Efficient Bulk Updates 45

update || IMB | 11MB | 116MB | 1.1GB | 11.7GB
Q1: value 8 ms 51 ms 0.52 s 8.6 s 1105 s
9 ms 60 ms 0.61 s 81s 414 s

80 ms | 7577 ms | 810.58 s - -

Q2: deletes || 16 6| 82 ms 0.96s| 224s| 1803s
Q3: inserts 133 ms | 9644 ms | 1019.10 s - -
17 ms | 143 ms 1.96s | 145.9s | 17735 s

Figure 4.3: Bulk update processing times of BaseX 7.3 (top) and BaseX
7.7 (bottom).

. V77 deletes . V77 inserts v73 deletes v73 inserts
1E+07
1E+05
1E+03 . '
1E+01 — -
1MB 11MB 116MB 1.1GB 11.7GB

Figure 4.4: Bulk updates processing time trends, in milliseconds for BaseX
7.3 and 7.7.

bay. Throughout the documents 1MB to 116MB, the processing time scales
more or less linearly without noticeable difference between v73 and v77. Yet,
for the last two bigger documents there is a sudden super-linear step-up in
processing time. While the document sizes increase only by a factor of 10,
the actual processing time grows by a factor between 50 and 100. As stated
in section 2.5, actual text values are not directly stored in the table but
referenced via an offset. Alternating between the location of the currently
accessed page of the table on disk and the end of the file that holds text
values might add up to finally explain this increase in processing time.

Q2: Deletes
delete node //date

Taking a look at figure 4.4, the advantage of v77 is clearly visible. As ex-
pected, we can remark a reduction of processing time by magnitude, through-
out all queries and document sizes. For documents 1MB to 116MB, the pro-

4. Performance of Efficient Bulk Updates 46

adjacency mapping . distances . structurals . overall

1E407

1E+05

1E+03

1E-01

1MB 11MB 116MB 1.1GB 11.7GB

Figure 4.5: Processing time trends for different parts of the delete bulk
update (@2, in milliseconds).

cessing time grows linearly for v77 with the document size, whereas for v73
the processing time 100-folds with each step-up. The trend explains well why
we aborted the tests for the two biggest documents with v73, as they take
at least several days to complete. V77 still performs very admirably for the
bigger documents, deleting around 1.8 * 105 nodes in only 22.4 seconds and
about 18 x 10% nodes in 30 minutes, respectively. Yet, as seen with the value
bulk updates, we can also remark super-linear and even quadratical increase
for the last step-up in document size. To gain more insight, we disassembled
the complete processing time of Q2 into several key-parts (fig. 4.5).

e Qwverall This describes the complete processing time of Q2. The overall
value is always higher than the sum of the four other parts, as a few
processes, i.e. query parsing, are not investigated separately.

e Structurals Accumulates the time for node deletion, updating of size
values and shifting of following tuples on disk.

e Distances Times the complete process of distance adjustment. This
includes the calculation of the appropriate set of nodes, calculation of
the new distances and writing distances to disk. It also includes the
time for pre value mapping (see Mapping).

e Mapping Accumulates time that is spent to map old pre values to new
ones and v.v. Mapping is a pure main-memory exercise.

e Adjacency Accumulates the time for all text node adjacency-related
operations, which includes checks and the actual resolution.

We can see that the time spent for pre value mapping and resolution of text
node adjacency increase linearly with the document size. Also, the trend for

4. Performance of Efficient Bulk Updates 47

adjacency mapping . distances . structurals . overall

1E407

1E+05
1E+403

1E-01

1MB 11MB 116MB 1.1GB 11.7GB

Figure 4.6: Processing time trends for different parts of the insert bulk
update (@3, in milliseconds).

distance adjustment does not explain the sudden deterioration, as it nicely
follows a linear pattern, exhibiting a slight dent only during the last step-
up. Yet, we also see that deleting the actual nodes on disk gets increasingly
expensive and, towards the end, eats up almost the complete processing time.
With expensive distance adjustments now eliminated from the equation, the
weakest part of a structural bulk update is the actual deletion of nodes on
disk and the required tuple shifts. Remembering the rules for logical paging
in BaseX, @2 only leaves some blank space at the end of the pages where
nodes are deleted. Consequently, the database does not get any smaller with
the deletion of nodes. Kircher [Kirl0] provides a possible explanation for
the performance drop in his thesis. To sum it up, several instances of the
deleted date elements reside on the same logical page. As each of them is
deleted individually, the same pages are repeatedly read-from and written-
to disk. Buffer strategies might catch some of the overhead, but clearly not
all of it. Experiments showed that doubling the page size already pays off.
Investing more time into finding a good balance between page size and overall
performance might proof worthwhile.

Q3: Inserts
for $d in //date return
insert node <ndate>99.99.9999< /ndate> after $d

The overall trend follows more or less what we have seen with the delete
bulk update in Q2. V77 leaves v73 behind starting already at the smallest
document size of IMB. Up to 116MB, the processing time increases linearly
with the document size. In contrast to v77 and Q2 we can already observe
a severe performance drop, stepping-up to document 1.1GB. Yet, inserting

4. Performance of Efficient Bulk Updates 48

about 1.8 x 10 nodes at approximately 9 * 10° locations in less than two
and a half minutes remains impressive. We also dismantled processing time
for @3 in figure 4.6. As observed with ()2 already, the insertion of nodes is
by far the most expensive part. While the pre value mapping holds up well,
each task that is I/O related grows a lot faster. For the last two step-ups,
even distance updates slow down quadratically. The cause for this is easily
found. In contrast to the bulk delete, nodes are added to the table. Upon
database creation, BaseX fills logical pages to the rim to keep database size
down. If new nodes are added, a new logical page has to be appended after
the sequence of all existing pages on disk and the page directory keeps track
of document order. This is detrimental in two ways:

e A lot of partially filled pages are created, as there is no redistribution
of existing tuples between existing pages.

e The database is no longer contiguously stored on disk, but logically
inserted nodes in the middle of the document are stored physically at
the end of the table.

The sum of these issues greatly increases the number of I/O operations and
gets increasingly severe with growing document size. Adding a text node
contributes in the same manner, as the inserted text has to be added to
the appropriate file. Again, investing more time in paging strategies and the
avoidance of fragmentation could really pay off. We talk a little bit more
about the implications of the document order on disk access strategies in
chapter 5.

4.3 Basic, Lazy & Rapid Replace

A few different approaches to replace operations have been introduced in
section 2.5.1. The rapid replace clearly targets a reduction of processing
time, whereas the lazy replace is capable of that as well, but mainly tries
to reduce fragmentation. This comes at a cost, namely when the replaced
and replacing tree are topologically different. We now try to shed some light
on the dynamics taking a closer look at a few distinct setups including the
worst-case. Figure 4.7 summarises the absolute processing times, whereas
figure 4.8 tries to put the different performances into context, with the basic
replace at the centre. Furthermore, there are two scenarios:

e Fven The replacing sequence has the exact same size or node count
as the replaced target. Theoretically, following tuples do not have to
be shifted. We also use XQuery and the following expression for the
comparison:

replace node //people with //people

4. Performance of Efficient Bulk Updates 49

| IMB | 11MB | 116MB | 1.1GB | 11.7GB

basic 18 ms | 144 ms | 1630 ms | 20.73 s | 528.7 s
lazy 16 ms | 133 ms | 1496 ms | 17.87s | 298.6 s
rapid 16 ms | 141 ms | 1601 ms | 19.51 s | 310.9s
lazy /rapid 17ms | 155 ms | 1724 ms | 21.03s | 357.7s

basic (uneven) || 17 ms | 121 ms | 1302 ms | 14.62s | 267.9 s
rapid (uneven) || 13 ms | 105 ms | 1103 ms | 11.87s | 169.9 s

Figure 4.7: Performance of different replace types and scenarios in BaseX
7.7.

<>' lazy 'O' rapid _A_ lazy /rapid ‘D’ uneven rapid basic

1.10

0.90

0.50

1MB 11MB 116MB 1.1GB 11.7GB

Figure 4.8: Relative comparison of different replace scenarios.

The size of the people subtree for different documents is shown in figure
4.1.

o Uneven We replace the target node people with the europe subtree,
which is about half the size:

replace node //people with //europe

As the two trees do not feature the same structure we cannot apply a
lazy replace. Yet, uneven comparison gives a better feel for the superi-
ority of the rapid replace.

To get comparable results, the individual replace approaches are explicitly
activated in-code. A modified version of BaseX 7.7 is tested that includes
the not yet officially released lazy replace.

Basic
The basic replace serves as a starting point for the comparison. The target

4. Performance of Efficient Bulk Updates 50

node is first deleted, followed by the insertion of the replacing tree at the
same location. For the two biggest documents, we witness a super-linear drop
of performance. Yet, replacing around 50 % 10% nodes in under 6 minutes is
impressive. Explaining the deterioration, the same rules apply as for bulk
inserts and deletes. In figure 4.8, the basic replace serves as the relative
centre of comparison for all the other replace techniques.

Lazy

A lazy replace can only be applied, if the two trees are structurally equal.
Traversing both trees completely for comparison is therefore mandatory. The
resulting processing time consists of a linear traversal of the table, in addition
to a single value update afterwards, which is negligible. Although the lazy
approach is only marginally faster (approx. 10%) than the basic replace, the
difference grows with the document size, peaking at around 43% time savings
for the 11.7GB document. But what we really gain here is a reduced rate of
fragmentation.

Rapid

The rapid replace generally follows the results of the lazy replace. Whereas
the difference at the beginning is even smaller (< 5%), it clearly outperforms
the naive approach for document 11.7GB with about 41% performance gains.
Due to the paging strategies, overwriting the table in-place seems to pay off
where performance sharply deteriorates otherwise.

Lazy /Rapid

Comparing a failed lazy replace with the basic approach is the most interest-
ing part. In this specific setup, we provoked the worst-case by making sure
the lazy replace sequentially scans the complete replaced tree before abort-
ing, due to structural differences with the replacing tree. Hence, the rapid
replace steps in. For documents 11MB to 1.1GB we can indeed see that this
combination is outperformed, even by the basic approach. However, residue
stays well below 10% most of the time. For the 11.7GB document, the ad-
vantage of the basic replace is already far gone (> 30%). In case the lazy
replace fails while causing considerable overhead, a rapid replace can almost
make up for the time lost and even outperforms the naive approach in some
cases.

Rapid (uneven)

In the last scenario, the replacing tree is only half the size of the replaced
tree. For cases like this, the lazy replace yields no overhead, as an initial
comparison of tree sizes already terminates the scan. We can also see, that
such a scenario puts the rapid replace further ahead. This once again comes
down to logical paging. Whereas the basic approach first deletes some tuples

4. Performance of Efficient Bulk Updates 51

and afterwards re-inserts them at the physical end of the table, the optimized
replace overwrites tuples in-place, thus avoids switching locations on disk
repeatedly.

4.4 Memory Consumption of Efficient Bulk Updates

Naturally, one might ask the question how much memory overhead we add
with the method of efficient structural bulk updates. After all, we add quite
some information in form of the AUC to the already memory-snatching im-
plementation of the PUL.

First, we think the test results speak for themselves. During the bulk
insert tests, we added up to 18 % 10 nodes to the database. All these nodes
are cached in main memory, in addition to the information of the PUL and
AUC. Yet, the 6GB of memory, assigned to the Java virtual machine, have
not been exceeded. The same applies to the replace scenario. Assigning 2GB
of memory is already enough to deal with the second largest document.

Indeed, stepping up from version 7.3 to 7.7 of BaseX, there is some gross
increase in memory consumption - but only if we limit our investigation to the
AUC. A great deal of space requirements could be shaved off by optimizing
the container that holds insertion sequences (which is beyond the scope of
this work). Of course, this only applies to the cases with actual inserts or
replaces. For all the others, we can safely say that the AUC enables us to
execute queries of a former unthinkable magnitude on, by todays standards,
already out-dated commodity hardware. If memory is still sparse, sections
2.6.2 and 2.6.4 could provide some relief.

5 Related Work

In the course of this work, we developed a method to reduce the immense
costs of distance adjustments for structural bulk updates on the Pre/Dist/Size
encoding. While this is a necessary step for us, the work of others focusses on
the development of an encoding scheme that is easily updatable in the first
place. The goal is to find a numbering scheme that requires little re-labeling
of existing nodes. Of course, both approaches have their advantages and dis-
advantages that we now try to put into perspective. Besides updatability,
locking-capability is another factor that has to be taken into account and is
tightly coupled with the encoding. Erat provides a deeper look into the mat-
ter of fine granular mapping in XML databases in his bachelor thesis [Eral3].

Regarding BaseX, reducing evaluation time of reading transactions, as
well as lowering memory footprint and disk space requirements have always
been the top priorities. As a consequence, the Pre/Dist/Size mapping em-
bodies these qualities to the full extent. Representing each node by a fixed-
length tuple not only speeds-up processing, but also lowers complexity and
memory consumption in general:

e As tuples are stored contiguously and require the same space, each one
of them can be accessed directly via the pre value offset. An additional
index to locate tuples is rendered superfluous.

e Document structure and number of levels have no influence on the
length of Pre/Dist/Size triples. Consequently, there is no need to com-
press labels or to apply heuristics based on the nature of a document.

e XPath axes are efficiently evaluated by basic algorithms, as discussed
in section 2.2.2.

Nothing good comes without a price tag, hence it was decided to compromise
on updatability. With such a mapping, structural changes of the tree are ex-
pensive. While costs for size updates and pre value shifts remain manageable,
costs for distance adjustments do not.

Another family of numbering schemes is able to handle structural changes
naturally. ORDPATH [OOP™04], as the most popular representative, uses

52

5. Related Work 53

prefix-labeling to model relationships within the tree. The children of the
node with label 7 are labeled 1.1, 1.3, etc.. Relying on odd numbers exclu-
sively, new nodes can be inserted between existing ones by the use of even
numbers. Even numbers serve as a caret and do not increase the depth of a
node. Consequently, there is no need to re-label existing nodes. DeweyIDs
[HHMWO5]| refine this concept, regarding the implementation. Fine-grained
locking is discussed as well. Yet, as updatability increases, several problem
fields are created in exchange, as the length of a label is no longer fixed:

e Accessing tuples on disk requires an additional index.

e For documents with a bigger depth or in case of frequent insertions,
labels get bulky. Different solutions can be found in the literature. In
case of DeweyIDs, the authors utilise Huffman codes to reduce memory
consumption directly. In [AS09]|, Alkhatib and Scholl propose a method
called CXDLS that exploits the redundant and verbose nature of XML.
By separating the tree structure from the content, topologically equiv-
alent subtrees are not labeled repeatedly. Assigning ORDPATH labels
to the compressed tree structure reduces space requirements and in-
creases query performance.

A number of NXDs exist that make use of dynamic labeling schemes. Sednal
is a highly regarded representative. Taking a look at its documentation re-
veals that the internal representation is based on a Dewey encoding. The
same holds true for eXist-db?. Both of them use B trees to index nodes on
disk. Comparing BaseX to either one of them with regards to update per-
formance, it is hard to stay unbiased. Neither Sedna nor exist-db cache bulk
updates and are consequently not able to offer XQUF support. Updates are
applied immediately, no caching takes place. On the one hand, this may lead
to side-effects, on the other, no resources are occupied with caching. For a
bulk delete of approximately 1.8 million nodes involving the 1.1GB XMark
document, BaseX 7.7 performed about twice as fast, compared to Sedna.
While this is not enough to derive a final conclusion, it shows that BaseX
and Sedna are at least competitive.

In the end, the document order is a real delimiter of performance. In
contrast to relational databases, where sets and not sequences are managed,
XML databases store content in a way that the result can be efficiently
assembled. Insertion consequently leads to a kind of fragmentation, where
nodes, added within the tree, are physically appended after all other pages on
disk which affects query performance in multiple areas. MonetDB is another
NXD based on a similar encoding as BaseX. In [BMRO05|, the authors limit
this effect by leaving empty space on logical pages upon the creation of

Yhttp://www.sedna.org, Native XML Database System, Institute for System Program-
ming, Russian Academy of Sciences
http:/ /exist-db.org,

5. Related Work 54

a database. As a heuristic approach, the benefits correlate strongly with
each individual use case. In [TBS02|, Tatarinov, Viglas, Beyer et al. already
came to the conclusion, that the document order indeed summons a number
of new challenges if ordered XML is to be managed with the unordered
relational model. The authors divide XML numbering schemes into three
sub-categories:

e Global Order. For example, the Pre value stores the absolute location
of a node. Upon insertion and deletion, this requires a large amount of
re-labeling.

e Local Order. Only stores the position of a node relative to its siblings.
On one hand, this effectively reduces the amount of re-labeling. On the
other, evaluating location steps gets more expensive and is carried out
in a recursive manner.

e Dewey Order. Forms the middle ground by combining the absolute
and relative approach. The ORDPATH encoding is a direct offspring
of Dewey Numbers.

While Tatarinov et al. state that only the Dewey Order performs reasonable
for queries and updates, we arrive at a different conclusion.

Implementing support for the XQUF on top of Pre/Dist/Size is mostly
a burden. Yet, to improve the updatability of our global encoding scheme, it
helps us to make a virtue of necessity. As the pending update list relies on
copious caching anyway, adding little information already solves the problem
for us. As the bulk insert and delete tests showed, the prevailing costs now
shift to the actual handling of tuples on disk - a problem that persists regard-
less of the encoding. We conclude for now that if updates are induced with
XQuery Update, choosing a numbering scheme like ORDPATH is not nat-
urally the best choice, as it simply shifts overhead to another level. Adding
the fact that the XQUF is by far the most important interface to induce
document changes finally places the Pre/Dist/Size encoding among the very
best, with regards to overall performance.

6 Conclusion

In chapter 2 we developed a general feel for the costs of structural bulk
updates. We followed this with a concept to carry out previously expensive
distance adjustments efficiently. The implementation of the atomic update
cache (AUC) adds reasonable overhead to the obligatory pending update list
(PUL). On top of that, we could add optimizations regarding replaces and
merging of atomic updates. We also provided meaningful direction for future
undertakings. Some of them evolve around improvement of the AUC itself
by speeding up the mapping of pre values or reducing memory consumption.
Enabling the user to decide how insertion sequences are dealt with could
further reduce memory consumption of update transactions where necessary.

It has never been easy to force the XQuery Update Facility into coop-
eration with the Pre/Dist/Size mapping. Once again, some adaptions had
to be made to leverage efficient structural bulk updates. A non-trivial map-
ping between pending update list and AUC was introduced in chapter 3,
that translates a set of update primitives into a ready-to-apply sequence of
atomic updates.

Chapter 4 took a closer look at the dynamics of different bulk update
scenarios. A direct comparison of BaseX 7.3 and a modified version of BaseX
7.7, featuring the discussed optimizations, highlighted the superiority of the
new approach. We also pointed out how structural updates could be further
accelerated by adjusting paging strategies. The lazy replace is a worthwhile
addition to the toolbox and puts a lid on fragmentation. Producing consid-
erable overhead in the worst case of failure, it could still be shown that a
rapid replace makes up for the time lost. A general discussion on memory
consumption of the AUC completes this chapter.

Finding an encoding scheme that performs outstanding, for both read-
ing and writing queries - unlike others, we did not tackle this problem on a
theoretical level (chapter 5). Instead, we built upon the already successful
Pre/Dist/Size mapping in BaseX and greatly extended its updating capa-
bilities with an additional layer. The final implementation is fully consistent
with the XQuery Update Facility specification and has already proven its
efficiency and reliability in production use.

55

List of Figures

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

2.18

3.1
3.2

3.3
3.4

4.1
4.2
4.3

XML sample document
Relational encoding of sample document.
XPath axes relative to the context node (¢).
An atomic value update renames node B to X.
Deleting a node from the table.
Locations of distance updates upon deletion in a flat document

(marked black). o
Bulk update example incl. order of updates.
Bulk insertion leading to O((n — 1)?) number of distance up-

datesonlevel 1..
State of the document tree before and after bulk update. . . .
States of the table during a bulk update.
Mapping pre values.
Distance adjustments after node insertion.
Accessing distances to update on-the-fly
Calculating the set of invalid distances.
Invalidation of shifts due to update sequence.
Example 1: Merging of text nodes after delete.
Example 2: Merging of text nodes after insert. Stage 3 not

displayed.
Example 3: Merging of text nodes after combined delete and

insert. Stage 3 not displayed.

XQuery Update example.
Order or update primitives and calculation of location relative
totarget.o
Primitive ordering: Case 2.
Primitive ordering: Case 3..

XMark test documents statistics.
Hardware used for testing (2010 Apple iMac).
Bulk update processing times of BaseX 7.3 (top) and BaseX
7.7 (bottom).

List of Figures 57

4.4 Bulk updates processing time trends, in milliseconds for Ba-

seX 7.3and 7.7. 45
4.5 Processing time trends for different parts of the delete bulk

update (@2, in milliseconds). 46
4.6 Processing time trends for different parts of the insert bulk

update (@3, in milliseconds). 47
4.7 Performance of different replace types and scenarios in BaseX

0 49

4.8 Relative comparison of different replace scenarios. 49

List of Algorithms

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
3.1

Processing a Bulk Update 21
Preparation of the AUC (tree-aware updates) 22
Application of structural updates 22
Adjusting distance values 23
Mapping pre values before and after updates 24
Resolving text node adjacency 25
Merging adjacent sibling text nodes 25
Application of atomic update 30
Delayed Distance Updates based on Id-Pre Mapping 33
Comparing two Update Primitives 40

58

Acknowledgements

First of all, I want to thank Prof. Dr. Marc H. Scholl and Prof. Dr. Marcel
Waldvogel for being my referees.

I am especially thankful to Dr. Christian Griin and Dr. Alexander Holupirek
who encouraged me to continue my studies, and also Marc Scholl who readily
included me into the group, providing me with the basis to do so. Even in
this special case where a reliable solution seemed far out, Christian happily
let me dig around in the dicey internals of BaseX. He has been a constant
advisor throughout my studies, which is greatly appreciated on my part.

59

Bibliography

[AS09]

[BMRO5|

[CDYY]

[CDF+09)

[Eral3|

[FMM*07]

[Gr0]

[HHMWO5]

[Kir10]

Ramez Alkhatib and Marc H. Scholl. Compacting XML Struc-
tures Using a Dynamic Labeling Scheme. In Proceedings of the
26th British National Conference on Databases: Dataspace: The
Final Frontier, BNCOD 26, pages 158-170, Berlin, Heidelberg,
2009. Springer-Verlag.

Peter A. Boncz, Stefan Manegold, and Jan Rittinger. Updating
the Pre/Post Plane in MonetDB/XQuery. In XIME-P, 2005.

James Clark and Steve DeRose. XML Path Lan-
guage (XPath) Version 1.0, WS3C Recommendation.
http://www.w3.org/TR /1999 /REC-xpath-19991116, Novem-
ber 1999.

Don Chamberlin, Michael Dyck, Daniela Florescu, Jim Melton,
Jonathan Robie, and Jéréme Siméon. XQuery Update Facility
1.0. http://www.w3.org/TR/xquery-update-10, Jun 2009.

Jens Erat. Fine Granular Locking in XML Databases. Bachelor
thesis, University of Konstanz, 2013.

Mary Fernéndez, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, and Norman Walsh. XQuery 1.0 and XPath 2.0 Data
Model (XDM). http://www.w3.org/ TR /xpath-datamodel, Jan
2007.

Christian Griin. Storing and Querying Large XML Instances.
PhD thesis, University of Konstanz, Sep 2010.

Michael P. Haustein, Theo Hérder, Christian Mathis, and
Markus Wagner. DeweylDs - The Key to Fine-Grained Man-
agement of XML Documents. In IN PROC. 20TH BRASILIAN
SYMPOSIUM ON DATABASES, 2005.

Lukas Kircher. BaseX: FExtending a Native XML Database with
XQuery Update. Bachelor thesis, University of Konstanz, 2010.

60

Bibliography 61

[OOP*04] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan
Cseri, Gideon Schaller, and Nigel Westbury. ORDPATHs:
Insert-Friendly XML Node Labels. In SIGMOD, pages 903-908,
2004.

[Pop12] Dimitar Popov. Advanced Storage Structures for Native XML
Databases. Master thesis, University of Konstanz, 2012.

[SWK'02| Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J.
Carey, loana Manolescu, and Ralph Busse. XMark: A Bench-
mark for XML Data Management. In VLDB, 2002.

[TBS02] Igor Tatarinov, Kevin Beyer, and Jayavel Shanmugasundaram.
Storing and querying ordered xml using a relational database
system. In In SIGMOD, pages 204-215, 2002.

