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Motivation XQuery is a functional programming language. It is

developed with a strong focus on querying and manipulating XML data.
XQuery 1.0 became a W3C recommendation in 2007. The XQuery Update
Facility (XQUF) extension followed in 2011 and is widely adopted today.

BaseXis an open-source, native XML database and XPath/XQuery 3.1
processor. Its internal XML representation is the interval-based Pre/Dist/Size
encoding schema. Very compact records of bxed length support efbcient
evaluation of all XPath axes.
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Pre: node position during pre-order
traversal

Dist: # nodes between self and parent
Size: # nodes in subtree + 1
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In contrast, prebPx-based encodings have a high updatability. Dynamic labels
require little (no) re-labeling after inserts or deletes. Yet, accessing nodes on
disk requires a layer of indirection as records vary in length.

Global

PR
-----
.*
.

......

Each encoding has its advantages and disadvantages. But have we really
reached the limits with Pre/Dist/Sizewith regards to updatability?
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¥ memory-intensive

¥ changes applied as last step of a transaction
¥y Oupdate effects only accessible after the transactionO

¥ stagesl. collect primitives 2. prepare application 3. apply updates
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Pre/Dist/Size Updatability  while value updates are cheap,

structural updates require re-labeling a potentially large amount of records.
Implicitly stored Prevalues of successor records are shifted efbciently. Only
Sizevalues of ancestor nodes are affected. However, aist value Is updated If
a node Is inserted or deleted between an existing node and its parent. The
costs depend on the update location and document structure.
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Bulk updates are especially expensive. Each structural update primitive
affects a set ofDist values. These sets are heavily intersected.
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Possible Solution

¥ leverage Pending Update List to pre-compute bnal distance values
¥ adjust eachDist value only once
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EfPcient Structural Bulk Updates The Atomic Update Cachis an
efpcient data structure that complements the PUL.

AUC

¥ collects all update information of a snapshot in document order
¥ points to affected table records and Dist values

¥ maps Prevalues before/after updates

¥ Is applied in reverse document order

¥ N> enables us to delay and pre-calculate Dist updates
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Bulk Update Stages

pll } | constraints }apply updates } adjust Dist } text adjacency

Filling the AUC is non-trivial. How to map XQUF primitives to atomic
updates without violating the document order? Each update primitive
operates on a target node and affects a specibc table location. Two primitives
can be ordered by a four-step comparison:

[ 1. location ] [ 2. subtree ]
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Results 2010 Apple iMac, Intel Core i3 3.2 GHz, 8 GB RAM,1 TB hard-
disk drive, BaseX 7.3, 7.7 (AUC), OS X 10.8.4, Oracle Java 7.12, -Xmx6G
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Observations

¥ AUC improves performance by LE+05 Qj_
magnitude

y Mmuch faster distance adjustment
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y Insertion/deletion of records is the 1E-01
new bottleneck (structurals)
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Conclusion

y Efpcient Structural Bulk Updates exploit the XQUF conditions

¥ little overhead is added in the form of the AUC

¥ the tree structure is efbciently restored after updates

¥ Pre/Dist/Sizereduces advantage of prebx labelling schemas (bulk updates)
¥ Document orders the new limiter
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