EfPcient Structural Bulk Updates on the Pre/Dist/Size XML Encoding

Lukas Kircher, Michael Grossniklaus, Christian GrYn, and Marc H. Scholl

Department of Computer and Information Science
Database & Information Systems (DBIS) Group
University of Konstanz
P.O. Box 188, 78457 Konstanz, Germany
brstname.lasthame@uni.kn

Motivation XQuery is a functional programming language. It is

developed with a strong focus on querying and manipulating XML data.
XQuery 1.0 became a W3C recommendation in 2007. The XQuery Update
Facility (XQUF) extension followed in 2011 and is widely adopted today.

BaseXis an open-source, native XML database and XPath/XQuery 3.1
processor. Its internal XML representation is the interval-based Pre/Dist/Size
encoding schema. Very compact records of bxed length support efbcient
evaluation of all XPath axes.

< A>
< B>
< Cl>< D/>
< /B>
<E>
< F>
<G/l
< /F>
< [A>

pre dist size
7

Pre: node position during pre-order
traversal

Dist: # nodes between self and parent
Size: # nodes in subtree + 1

34

34

Y L SN S R
QTmI QWP
K

0
| 3
2 1
3 1
4 1
5 2
6 1

In contrast, prebPx-based encodings have a high updatability. Dynamic labels
require little (no) re-labeling after inserts or deletes. Yet, accessing nodes on
disk requires a layer of indirection as records vary in length.

Global

PR

.*
.

......

Each encoding has its advantages and disadvantages. But have we really
reached the limits with Pre/Dist/Sizewith regards to updatability?

Pending Update List (PUL) Hot
A ~] .. I N 0
¥ OdeepO cache of XQUF atomic update primitives (ﬁe i~ ap_s }

¥ memory-intensive

¥ changes applied as last step of a transaction
¥y Oupdate effects only accessible after the transactionO

¥ stagesl. collect primitives 2. prepare application 3. apply updates

<id_confirmed>no</id_confirmed
into $person

Pre/Dist/Size Updatability while value updates are cheap,

structural updates require re-labeling a potentially large amount of records.
Implicitly stored Prevalues of successor records are shifted efbciently. Only
Sizevalues of ancestor nodes are affected. However, aist value Is updated If
a node Is inserted or deleted between an existing node and its parent. The
costs depend on the update location and document structure.

Pre Dist Size Value
0 1 6 A .

1 1 2 B

N\

g~ w N
R DN WP
R N P
O MmO

Bulk updates are especially expensive. Each structural update primitive
affects a set ofDist values. These sets are heavily intersected.

a N\ XMark111MB.xr
for $person in //person return | |
insert node ! site E
<id_confirmed>no</id_confirmed >| —
. I
INtO $person people I
I

-’ / \\\

person C personl person z E person 2549
[/T

Possible Solution

¥ leverage Pending Update List to pre-compute bnal distance values
¥ adjust eachDist value only once

Universitat ==
Konstanz

EfPcient Structural Bulk Updates The Atomic Update Cachis an
efpcient data structure that complements the PUL.

AUC

¥ collects all update information of a snapshot in document order
¥ points to affected table records and Dist values

¥ maps Prevalues before/after updates

¥ Is applied in reverse document order

¥ N> enables us to delay and pre-calculate Dist updates

(-)
1. ins(2,Y) atomic first affected tuple shifts accum. shifts
NN L G R I T
&) © QO 0O © Ins(2, 1 0
DEL INS INS InS(Z’Y) 2 (3) 1]-
S |\ /

Bulk Update Stages

pll } | constraints }apply updates } adjust Dist } text adjacency

Filling the AUC is non-trivial. How to map XQUF primitives to atomic
updates without violating the document order? Each update primitive
operates on a target node and affects a specibc table location. Two primitives
can be ordered by a four-step comparison:

[1. location] [2. subtree]

Q Pl.delete B Pl.insertY into!
P2:insert X after P2:insert X into

B) (© @ P2 > P1 QO .-

[3. target j [4. rank j

rank
.- O insert before Pi1:insert before
Eéimggﬁ;gﬁ?g% 1 delete P2: insert after B
| 2 replace
@ “ (C) P1>P2 3 rename P2>P1
E

Results 2010 Apple iMac, Intel Core i3 3.2 GHz, 8 GB RAM,1 TB hard-
disk drive, BaseX 7.3, 7.7 (AUC), OS X 10.8.4, Oracle Java 7.12, -Xmx6G

XM ark data . V77 deletes . V77 inserts v73 deletes . v73 inserts
Insert node <ndate>99</ndate>

after $d 1E+01 I E‘ I l

1MB 11MB 116MB 1.1GB 11.7GB

adjacency . mapping . distances . structurals . overall

1E+07

Q1 delete node //date

1E+05

Q2 for $d in //datereturn

1E+03

1E+07

Observations

¥ AUC improves performance by LE+05 Qj_
magnitude

y Mmuch faster distance adjustment

1E+03
y still quadratic complexity for bigger 1E+01 ‘ i
documents | -‘

y Insertion/deletion of records is the 1E-01
new bottleneck (structurals)

1E+07

9
. . 1E+05 L
Keeping records in document
order is the new limiter 1E+03 E
1E+01 — —
- R l:
1E-01
1MB 11MB 116MB 1.1GB 11.7GB
Conclusion

y Efpcient Structural Bulk Updates exploit the XQUF conditions

¥ little overhead is added in the form of the AUC

¥ the tree structure is efbciently restored after updates

¥ Pre/Dist/Sizereduces advantage of prebx labelling schemas (bulk updates)
¥ Document orders the new limiter

mailto:firstname.lastname@uni.kn
mailto:firstname.lastname@uni.kn

