
EfÞcient Structural Bulk Updates on the Pre/Dist/Size XML Encoding

Motivation XQuery is a functional programming language. It is

developed with a strong focus on querying and manipulating XML data.
XQuery 1.0 became a W3C recommendation in 2007. The XQuery Update
Facility (XQUF) extension followed in 2011 and is widely adopted today.

BaseX is an open-source, native XML database and XPath/XQuery 3.1
processor. Its internal XML representation is the interval-based Pre/Dist/Size
encoding schema. Very compact records of Þxed length support efÞcient
evaluation of all XPath axes.

< A>
< B>

< C/>< D/>
< /B>
< E/>
< F>

< G/>
< /F>

< /A>

(a) Example document

B E F

A

C D G

(0,1)

(1,1)

(2,1)

(4,4)

(3,2) (6,1)

(5,5)

Wednesday, September 4, 13

(b) Tree with(pre,dist) tuples

pre dist size val
0 1 7 A
1 1 3 B
2 1 1 C
3 2 1 D
4 4 1 E
5 5 2 F
6 1 1 G

(c) Sequential table

pre dist size val
0 1 6 A
1 1 2 B
2 1 1 D
3 3 1 E
4 4 2 F
5 1 1 G

(d) Table after update

Fig. 1: Relational Pre/Dist/Size encoding of example XML document.

Figure 1 explains the Pre/Dist/Size encoding. A sample
XML document is given in Figure 1a with its tree represen-
tation shown in Figure 1b. Pre/Dist/Size uses three values to
encode the document structure. Thepre value is the position of
the node in the tree pre-order traversal. As shown in Figure 1c,
pre values determine the position of records in the sequential
table. Thedist value encodes the parent of a node as the relative
distance in the sequential table. For example, the parent of
< F> is < A> , sincepre(F) ! dist (F) = pre(A). Finally, the
size value denotes the number of descendant elements of a
node (including the node itself).

A. Querying the Pre/Dist/Size Encoding

In XQuery [14], queries over the structure of an XML
document are typically expressed in terms of XPath axes. We
show in the following how queries over each of these axes can
be efÞciently evaluated based on the Pre/Dist/Size encoding.

¥ As seen above, aparent nodep of a noden has the
pre valuepre(p) = pre(n) ! dist (n).

¥ The Þrst child node c1 of a node n is found at
pre(c1) = pre(n)+1 . All other child nodesci can be
found by iteratively adding the size of the current child
to its pre value, i.e.,pre(ci) = pre(ci! 1)+ size(ci! 1),
until pre(ci) " pre(n) + size(n).

¥ Theancestorsof a noden are computed by iteratively
calculating the parent of the current nodeni, until
pre(ni) = 0 .

¥ All descendantsof a noden are located in the interval
[pre(n) + 1 , pre(n) + size(n) ! 1] and can be read
sequentially from the table.

¥ To Þnd thepreceding-siblingsof a noden, the parent
nodep is Þrst determined and then all child nodesci
are returned untilci = n.

¥ Similarly, the following-siblings of a node n are
found through its parentp by starting withci = n
and iterating over all child nodes untilpre(ci) "
pre(p) + size(p).

¥ The set ofpreceding nodes of a noden is calculated
as all nodes in the interval[0, pre(n) ! 1] minus all
ancestor nodes ofn.

¥ The set offollowing nodes of a noden is given by all
nodes the interval[pre(n) + size(n), |T | ! 1], where
|T| is the cardinality of the sequential tableT.

All other axes are either trivial (e.g.,self) or combinations
of already presented axes (e.g.,ancestor-or-self, descendant-
or-self, etc.) and can thus be evaluated accordingly.

B. Updating the Pre/Dist/Size Encoding

In XML databases, two types of (atomic) updates can
be distinguished. First,value updateschange the value of
an element in the document and, second,structural updates
change the document structure itself. In the Pre/Dist/Size
encoding, value updates can be implemented efÞciently by
simply updating theval value in the sequential table. Structural
updates, however, can be costly. For example, suppose that
element< C> is to be deleted in the example document shown
in Figure 1. The resulting sequential table, which highlights
the required changes in bold, is shown in Figure 1d. We now
examine the effects of inserts and deletes on the Pre/Dist/Size
encoding in more detail as this understanding is the basis for
the structural bulk update technique presented in this paper.

Let us assume that we insert (or delete) a documentA of
sizes at positionl in the sequential tableT. The pre values of
all tuplesti # T with pre(ti) # [0, l ! 1] remain unchanged,
whereas all pre valuespre(ti) # [l, |T |] have to be recalculated
as pre(ti) = pre(ti) ± s, depending on whether the update
is an insert (+) or a delete (!). In order to obtain a compact
encoding, pre values are not represented explicitly in the table,
but implicitly by the (physical) row number of the record. In
the worst case, this requires shiftingO(|T |) tuples on disk.

Using an (in-memory) logical page directory to map the
Þrst pre value (fpre) of each pagepi to its physical address, pre
values can be updated by shifting the tuples inO(1) pages plus
updating the subsequentfpre values asfpre(pi) = fpre(pi) ±
fpre(pi! 1). Figure 2 illustrates the logical paging mechanism.
Initially, all pages are Þlled to their capacity of 256 records. On
the left-hand side, 100 records have been deleted from the Þrst
page. Records in subsequent pages are not shifted, but their
fpre value is decremented by100. On the right-hand side, 100
records are inserted into the Þrst page, which is already full.
Instead of shifting all records, a new page is allocated to hold
the records and the page directory is updated accordingly.1

The dist value of all tuplesti # T for which (pre(ti) !
dist (ti)) < l $ pre(ti) needs to be recalculated asdist (ti) =
dist (ti) ± size. The actual cost of updating the distances is

1Note that this technique is similar to the use of the Pos/Size/Level table in
MonetDB/XQuery [3], which is based on the Pre/Size/Level XML encoding.

<A>

<C/><D/>

<E/>
<F>

<G/>
</F>

(a) Example document

B E F
A

C D G

(0,1)

(1,1)

(2,1)

(4,4)

(3,2) (6,1)

(5,5)

Wednesday, September 4, 13

(b) Tree with (pre,dist) tuples

pre dist size val
0 1 7 A
1 1 3 B
2 1 1 C
3 2 1 D
4 4 1 E
5 5 2 F
6 1 1 G

(c) Sequential table

pre dist size val
0 1 6 A
1 1 2 B
2 1 1 D
3 3 1 E
4 4 2 F
5 1 1 G

(d) Table after update

Fig. 1: Relational Pre/Dist/Size encoding of example XML document.

Figure 1 explains the Pre/Dist/Size encoding. A sample
XML document is given in Figure 1a with its tree represen-
tation shown in Figure 1b. Pre/Dist/Size uses three values to
encode the document structure. The pre value is the position of
the node in the tree pre-order traversal. As shown in Figure 1c,
pre values determine the position of records in the sequential
table. The dist value encodes the parent of a node as the relative
distance in the sequential table. For example, the parent of
< F> is < A> , since pre(F) ! dist(F) = pre(A). Finally, the
size value denotes the number of descendant elements of a
node (including the node itself).

A. Querying the Pre/Dist/Size Encoding

In XQuery [14], queries over the structure of an XML
document are typically expressed in terms of XPath axes. We
show in the following how queries over each of these axes can
be efficiently evaluated based on the Pre/Dist/Size encoding.

¥ As seen above, a parent node p of a node n has the
pre value pre(p) = pre(n) ! dist(n).

¥ The first child node c1 of a node n is found at
pre(c1) = pre(n)+1 . All other child nodes ci can be
found by iteratively adding the size of the current child
to its pre value, i.e., pre(ci) = pre(ci! 1)+ size(ci! 1),
until pre(ci) " pre(n) + size(n).

¥ The ancestors of a node n are computed by iteratively
calculating the parent of the current node ni, until
pre(ni) = 0 .

¥ All descendants of a node n are located in the interval
[pre(n) + 1 , pre(n) + size(n) ! 1] and can be read
sequentially from the table.

¥ To find the preceding-siblings of a node n, the parent
node p is first determined and then all child nodes ci
are returned until ci = n.

¥ Similarly, the following-siblings of a node n are
found through its parent p by starting with ci = n
and iterating over all child nodes until pre(ci) "
pre(p) + size(p).

¥ The set of preceding nodes of a node n is calculated
as all nodes in the interval [0, pre(n) ! 1] minus all
ancestor nodes of n.

¥ The set of following nodes of a node n is given by all
nodes the interval [pre(n) + size(n), |T | ! 1], where
|T | is the cardinality of the sequential table T .

All other axes are either trivial (e.g., self) or combinations
of already presented axes (e.g., ancestor-or-self, descendant-
or-self, etc.) and can thus be evaluated accordingly.

B. Updating the Pre/Dist/Size Encoding

In XML databases, two types of (atomic) updates can
be distinguished. First, value updateschange the value of
an element in the document and, second, structural updates
change the document structure itself. In the Pre/Dist/Size
encoding, value updates can be implemented efficiently by
simply updating the val value in the sequential table. Structural
updates, however, can be costly. For example, suppose that
element < C> is to be deleted in the example document shown
in Figure 1. The resulting sequential table, which highlights
the required changes in bold, is shown in Figure 1d. We now
examine the effects of inserts and deletes on the Pre/Dist/Size
encoding in more detail as this understanding is the basis for
the structural bulk update technique presented in this paper.

Let us assume that we insert (or delete) a document A of
size s at position l in the sequential table T . The pre values of
all tuples ti # T with pre(ti) # [0, l ! 1] remain unchanged,
whereas all pre values pre(ti) # [l, |T |] have to be recalculated
as pre(ti) = pre(ti) ± s, depending on whether the update
is an insert (+) or a delete (!). In order to obtain a compact
encoding, pre values are not represented explicitly in the table,
but implicitly by the (physical) row number of the record. In
the worst case, this requires shifting O(|T |) tuples on disk.

Using an (in-memory) logical page directory to map the
first pre value (fpre) of each page pi to its physical address, pre
values can be updated by shifting the tuples in O(1) pages plus
updating the subsequent fpre values as fpre(pi) = fpre(pi) ±
fpre(pi! 1). Figure 2 illustrates the logical paging mechanism.
Initially, all pages are filled to their capacity of 256 records. On
the left-hand side, 100 records have been deleted from the first
page. Records in subsequent pages are not shifted, but their
fpre value is decremented by 100. On the right-hand side, 100
records are inserted into the first page, which is already full.
Instead of shifting all records, a new page is allocated to hold
the records and the page directory is updated accordingly.1

The dist value of all tuples ti # T for which (pre(ti) !
dist(ti)) < l $ pre(ti) needs to be recalculated as dist(ti) =
dist(ti) ± size. The actual cost of updating the distances is

1Note that this technique is similar to the use of the Pos/Size/Level table in
MonetDB/XQuery [3], which is based on the Pre/Size/Level XML encoding.

< A>
< B>

< C/>< D/>
< /B>
< E/>
< F>

< G/>
< /F>

< /A>

(a) Example document

B E F

A

C D G

(0,1)

(1,1)

(2,1)

(4,4)

(3,2) (6,1)

(5,5)

Wednesday, September 4, 13

(b) Tree with (pre,dist) tuples

pre dist size val
0 1 7 A
1 1 3 B
2 1 1 C
3 2 1 D
4 4 1 E
5 5 2 F
6 1 1 G

(c) Sequential table

pre dist size val
0 1 6 A
1 1 2 B
2 1 1 D
3 3 1 E
4 4 2 F
5 1 1 G

(d) Table after update

Fig. 1: Relational Pre/Dist/Size encoding of example XML document.

Figure 1 explains the Pre/Dist/Size encoding. A sample
XML document is given in Figure 1a with its tree represen-
tation shown in Figure 1b. Pre/Dist/Size uses three values to
encode the document structure. The pre value is the position of
the node in the tree pre-order traversal. As shown in Figure 1c,
pre values determine the position of records in the sequential
table. The dist value encodes the parent of a node as the relative
distance in the sequential table. For example, the parent of
< F> is < A> , since pre(F) ! dist (F) = pre(A). Finally, the
size value denotes the number of descendant elements of a
node (including the node itself).

A. Querying the Pre/Dist/Size Encoding

In XQuery [14], queries over the structure of an XML
document are typically expressed in terms of XPath axes. We
show in the following how queries over each of these axes can
be efficiently evaluated based on the Pre/Dist/Size encoding.

• As seen above, a parent node p of a node n has the
pre value pre(p) = pre(n) ! dist (n).

• The first child node c1 of a node n is found at
pre(c1) = pre(n)+1. All other child nodes ci can be
found by iteratively adding the size of the current child
to its pre value, i.e., pre(ci) = pre(ci−1)+size(ci−1),
until pre(ci) " pre(n) + size(n).

• The ancestorsof a node n are computed by iteratively
calculating the parent of the current node ni, until
pre(ni) = 0.

• All descendantsof a node n are located in the interval
[pre(n) + 1, pre(n) + size(n) ! 1] and can be read
sequentially from the table.

• To find the preceding-siblingsof a node n, the parent
node p is first determined and then all child nodes ci
are returned until ci = n.

• Similarly, the following-siblings of a node n are
found through its parent p by starting with ci = n
and iterating over all child nodes until pre(ci) "
pre(p) + size(p).

• The set of preceding nodes of a node n is calculated
as all nodes in the interval [0, pre(n) ! 1] minus all
ancestor nodes of n.

• The set of following nodes of a node n is given by all
nodes the interval [pre(n) + size(n), |T | ! 1], where
|T | is the cardinality of the sequential table T .

All other axes are either trivial (e.g., self) or combinations
of already presented axes (e.g., ancestor-or-self, descendant-
or-self, etc.) and can thus be evaluated accordingly.

B. Updating the Pre/Dist/Size Encoding

In XML databases, two types of (atomic) updates can
be distinguished. First, value updates change the value of
an element in the document and, second, structural updates
change the document structure itself. In the Pre/Dist/Size
encoding, value updates can be implemented efficiently by
simply updating the val value in the sequential table. Structural
updates, however, can be costly. For example, suppose that
element < C> is to be deleted in the example document shown
in Figure 1. The resulting sequential table, which highlights
the required changes in bold, is shown in Figure 1d. We now
examine the effects of inserts and deletes on the Pre/Dist/Size
encoding in more detail as this understanding is the basis for
the structural bulk update technique presented in this paper.

Let us assume that we insert (or delete) a document A of
size s at position l in the sequential table T . The pre values of
all tuples ti # T with pre(ti) # [0, l ! 1] remain unchanged,
whereas all pre values pre(ti) # [l, |T |] have to be recalculated
as pre(ti) = pre(ti) ± s, depending on whether the update
is an insert (+) or a delete (!). In order to obtain a compact
encoding, pre values are not represented explicitly in the table,
but implicitly by the (physical) row number of the record. In
the worst case, this requires shifting O(|T |) tuples on disk.

Using an (in-memory) logical page directory to map the
first pre value (fpre) of each page pi to its physical address, pre
values can be updated by shifting the tuples in O(1) pages plus
updating the subsequent fpre values as fpre(pi) = fpre(pi)±
fpre(pi−1). Figure 2 illustrates the logical paging mechanism.
Initially, all pages are filled to their capacity of 256 records. On
the left-hand side, 100 records have been deleted from the first
page. Records in subsequent pages are not shifted, but their
fpre value is decremented by 100. On the right-hand side, 100
records are inserted into the first page, which is already full.
Instead of shifting all records, a new page is allocated to hold
the records and the page directory is updated accordingly.1

The dist value of all tuples ti # T for which (pre(ti) !
dist (ti)) < l $ pre(ti) needs to be recalculated as dist (ti) =
dist (ti) ± size. The actual cost of updating the distances is

1Note that this technique is similar to the use of the Pos/Size/Level table in
MonetDB/XQuery [3], which is based on the Pre/Size/Level XML encoding.

In contrast, preÞx-based encodings have a high updatability. Dynamic labels
require little (no) re-labeling after inserts or deletes. Yet, accessing nodes on
disk requires a layer of indirection as records vary in length.Encoding Schemas

Query Performance
vs. Updatability
vs. Compactness
vs. É
!
!
Document Order Relational Model
(Tatarinov et al. 2002)
!
!
ORDPATH (OÕNeal et al. 2004)
¥ no re-labeling..
¥ .. yet other overhead

1

1 2

1 2

1

2 5

3 4

1

1.1 1.2

1.1.1 1.1.2

Local

Global

Dewey
1

1.1 1.3

1.1.1 1.1.3

ORDPATH

<A>	
 <C/><D/> 	
 <E/> 	

Encoding Schemas

Query Performance
vs. Updatability
vs. Compactness
vs. É
!
!
Document Order Relational Model
(Tatarinov et al. 2002)
!
!
ORDPATH (OÕNeal et al. 2004)
¥ no re-labeling..
¥ .. yet other overhead

1

1 2

1 2

1

2 5

3 4

1

1.1 1.2

1.1.1 1.1.2

Local

Global

Dewey
1

1.1 1.3

1.1.1 1.1.3

ORDPATH

<A>!
 <C/><D/> !
 <E/> !

Encoding Schemas

Query Performance
vs. Updatability
vs. Compactness
vs. …
!
!
Document Order Relational Model
(Tatarinov et al. 2002)
!
!
ORDPATH (O’Neal et al. 2004)
• no re-labeling..
• .. yet other overhead

1

1 2

1 2

1

2 5

3 4

1

1.1 1.2

1.1.1 1.1.2

Local

Global

Dewey
1

1.1 1.3

1.1.1 1.1.3

ORDPATH

<A>!
 <C/><D/> !
 <E/> !

Encoding Schemas

Query Performance
vs. Updatability
vs. Compactness
vs. É
!
!
Document Order Relational Model
(Tatarinov et al. 2002)
!
!
ORDPATH (OÕNeal et al. 2004)
¥ no re-labeling..
¥ .. yet other overhead

1

1 2

1 2

1

2 5

3 4

1

1.1 1.2

1.1.1 1.1.2

Local

Global

Dewey
1

1.1 1.3

1.1.1 1.1.3

ORDPATH

<A>!
 <C/><D/> !
 <E/> !

Each encoding has its advantages and disadvantages. But have we really
reached the limits with Pre/Dist/Size with regards to updatability?

Pre/Dist/Size Updatability While value updates are cheap,

structural updates require re-labeling a potentially large amount of records.
Implicitly stored Pre values of successor records are shifted efÞciently. Only
Size values of ancestor nodes are affected. However, a Dist value is updated if
a node is inserted or deleted between an existing node and its parent. The
costs depend on the update location and document structure.Pre/Dist/Size: Deleting a Node

Size
¥ update ancestors explicitly
Pre
¥ shift greater Pre values implicitly
Dist
¥ adjust following siblings of ancestor-or-self

nodes explicitly
!
Single Update Performance
¥ 26000 dist. adjustments / 3.2MM nodes

A

B E

C D

Pre Dist Size Value
0 1 6 A
1 1 2 B
2 1 1 C
2 1 1 D
3 3 1 E
4 4 2 F
5 1 1 G

F

G

(0,1)

(1,1)

(2,1)

(3,3)

(2,1)

(4,4)

(5,1)

insert as first into //A !
!
insert as last into //A

23 ms
4 ms

Pre/Dist/Size: Deleting a Node

Size
¥ update ancestors explicitly
Pre
¥ shift greater Pre values implicitly
Dist
¥ adjust following siblings of ancestor-or-self

nodes explicitly
!
Single Update Performance
¥ 26000 dist. adjustments / 3.2MM nodes

A

B E

C D

Pre Dist Size Value
0 1 6 A
1 1 2 B
2 1 1 C
2 1 1 D
3 3 1 E
4 4 2 F
5 1 1 G

F

G

(0,1)

(1,1)

(2,1)

(3,3)

(2,1)

(4,4)

(5,1)

insert as first into //A 	
!
insert as last into //A

23 ms
4 ms DEL

Bulk updates are especially expensive. Each structural update primitive
affects a set of Dist values. These sets are heavily intersected.

Structural Bulk Updates

Distance Adjustments Expensive
¥ iterative approach
!
Ef! cient Bulk Updates ..
¥ explicit distance adjustment
¥ with little overhead
! XMark111MB.xml

site

people

person 0 person 1 person 2 person 25499É

É

for $person in //person return !
 insert node !
 <id_confirmed>no</id_confirmed >!
 into $person

A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I.
Manolescu and R. Busse
XMark: A Benchmark for XML Data Management

In VLDB, 2002.

Structural Bulk Updates

Distance Adjustments Expensive
¥ iterative approach
!
Ef! cient Bulk Updates ..
¥ explicit distance adjustment
¥ with little overhead
! XMark111MB.xml

site

people

person 0 person 1 person 2 person 25499É

É

for $person in //person return !
 insert node !
 <id_confirmed>no</id_confirmed >!
 into $person

A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I.
Manolescu and R. Busse
XMark: A Benchmark for XML Data Management

In VLDB, 2002.

Possible Solution
¥ leverage Pending Update List to pre-compute Þnal distance values
¥ adjust each Dist value only once

Pending Update List (PUL)
¥ ÔdeepÕ cache of XQUF atomic update primitives
¥ memory-intensive
¥ changes applied as last step of a transaction
¥ Òupdate effects only accessible after the transactionÓ
¥ stages: 1. collect primitives 2. prepare application 3. apply updates

Bulk Updates with XQuery Update

Pending Update List (PUL)
¥ set-based caching
¥ description + insertion sequences
¥ pseudo-ACID
¥ high memory consumption
!
PUL ÔBene! tsÕ
¥ extensive knowledge base!

query snapshot

stages

for $person in //person return !
 insert node !
 <id_confirmed>no</id_confirmed >!
 into $person

I. collecting primitives
II. constraint checking

III. application of updates

EfÞcient Structural Bulk Updates The Atomic Update Cache is an

efÞcient data structure that complements the PUL.

AUC
¥ collects all update information of a snapshot in document order
¥ points to affected table records and Dist values
¥ maps Pre values before/after updates
¥ is applied in reverse document order
¥ Ñ> enables us to delay and pre-calculate Dist updates

2.4. Pre/Dist/Size Mapping

Figure 2.4: Directory of logical pages: a) initial state for a page size of 4096 bytes,
b) deletion of 100 nodes, and c) insertion of 100 nodes

Figure 2.4 illustrates an exemplary directory, for which the size of a logical page was set

to 4096 bytes, in compliance with the size of a typical disk page. As one tuple occupies

16 bytes, a maximum of 256 tuples is stored per page. In 2.4 b), a noden has been

deleted; its 99 descendants (size(n) = 100) have all been located in the Þrst pagep.

After the deletion and the update of all size values of the ancestors of noden, size(n) is

subtracted from all subsequent entriesp + 1 in the directory. Example 2.4 c) shows the

mapping after an insert operation: 100 nodes are inserted atpre = 256, resulting in the

creation of a new page (here: 5) at the end of the existing pages and the insertion of a

new entry in the directory.

Even for large databases, the directory will stay comparatively small, so that it can be

usually kept in main memory. Let P be the number of tuples per page, which is the page

size divided by the tuple size, andmax(db) the maximum database size. Ifn values need

to be stored per dictionary entry, a total of námax (db)
P values needs to be handled, yielding

2á231/ (4096/ 16) = 16777216integers and a memory consumption of 64 MiB in our rep-

resentation. Although the deletion and insertion of dictionary entries requires copying

large main memory areas, the operation is cheap, compared to update operations on

disk. If even larger pre ranges are to be supported, or if update performance proves to

be too inefÞcient for large database instances, the dictionary structure can be extended

to a conventional B-Tree and stored on disk [BM72].

MONETDB/XQUERY, which is based on the pre/ size/ level encoding, offers a similar

solution by adding a new pos/ size/ level table to the storage, which is divided into logical

pages [BMR05]. The original table serves as a view on the new table with all pages in

order. A new node property resembles theid property in our representation and serves

as unique node identiÞer. As attributes are stored in extra tables, an additional table

maps node to pos values. Pages may contain gaps to improve page locking behavior for

the update of ancestor nodes. Ð A different solution has been chosen in our context, as

the presented directory is very light-weight and does not require extra tables. Next, the

24

Fig. 2: Deletion and insertion using logical pages

hard to predict as it highly depends on the document structure.
As the nodes to update lie on the following-sibling axes ofA
and of all its parents, the worst case requiresO(|T|) updates.
Since dist values are represented explicitly in the table, these
update costs cannot be reduced as in the case of pre values.

Finally, the size value has to be updated assize(t i) =
size(t i) ± s for all tuples t i ! T for which pre(t i) < l <
pre(t i) + size(t i), i.e., all ancestors ofA. Therefore, the cost
of updating the size values is bounded by the height of the
documentO(log|T|) in general andO(|T|) in the worst case.

III. E FFICIENT STRUCTURAL BULK UPDATES

As explained in the previous section, distance adjustments
are the dominating factor in the cost of atomic structural
updates in the Pre/Dist/Size encoding. Additionally, the same
distances are often adjusted multiple times in a sequence of
updates. In order to reduce overall processing time of such bulk
updates, the goal of this work is to avoid redundant distance
adjustments without adding excessive overhead.

In contrast to the na¬õve approach, where distances are
iteratively adjusted with each atomic update, the proposed
technique adjusts distancesexplicitly after all updates have
been applied. This approach is enabled by a data structure,
namedAtomic Update Cache(AUC), which holds all atomic
updates of one bulk update. The AUC is organized as a table
that stores atomic updates in document order of their location.
For each atomic update, the pre value of the Þrst affected tuple
in the sequential table is recorded. Additionally, the number
of tuples shifted by each individual update as well as the
accumulated number of tuples shifted by the update and all
its preceding updates is stored. In this section, we present a
technique for efÞcient bulk updates that is based on this AUC.

A. Avoiding Redundant Distance Adjustments

Our method to avoid repeated and therefore redundant
distance adjustments is based on four observations that apply
to bulk updates in the presence of the described AUC. Based
on examples, we motivate each observation and demonstrate
how it contributes to supporting efÞcient bulk updates.

Observation 1:If updates are applied in reverse document
order, adjusting distance values can be delayed until the very
last step of the updating process.

If a sequence of updates is executed from the highest to
the lowest pre value, re-computation of the individual update
locations is avoided. A tuplet is only shifted if the number of
nodes changes in the interval[0, pre(t)]. Similarly, distance
values are only adjusted if the number of nodes changes

between a child and its parent. Inserting or deleting a tuple only
invalidates the distances of following tuples. Therefore, the part
of the sequential table that is accessed by consecutive atomic
updates during a bulk update always remains valid. Based on
this fact, distance adjustments can be delayed altogether by
applying atomic updates as follows.

1) Traverse atomic updates in the AUC back to front,
i.e., in reverse document order.

2) Insert or delete the corresponding nodes, implicitly
shift pre values of the following tuples, adjust the
size values of the ancestors, but leave distances.

3) After applying all atomic updates, restore the tree
structure by adjusting distances in anefÞcientmanner.

We now focus on the third step as it determines the overall
performance of the proposed technique.

Observation 2: The contents of the AUC serve as a bi-
directional mappingpreold (t i) " prenew (t i) between the pre
value of a tuple before and after the bulk update.

To substantiate this observation, we discuss how the above-
mentioned information on shifts and accumulated shifts con-
tained in the AUC is initialized and used. Figure 3a shows
the effect of a bulk update consisting of two inserts and one
delete on a document that contains nodes< A> , < B> , and
< C> as siblings. The pre values of the nodes in the sequential
table are displayed above the nodes. Note that the atomic
updates of this bulk update are applied in reverse document
order. As a consequence, the repeated insertion at position
2, Þrst < Y> then < X> , yields the intended sequence. The
corresponding AUC in document order is given in Figure 3b.
The shifts column records the number of tuple shifts and can
be calculated based on the size of the inserted or deleted tree.
Since we insert and delete single nodes in our examples, the
number of shifts is always1 or # 1, respectively. Column
accum. shiftslists the accumulated number of individual tuple
shifts in document order. Finally, theÞrst affected tuplecolumn
contains the lowest pre value that is shifted as a consequence
of the corresponding atomic update. Atomic deletes affect the
Þrst pre value on the following axis, whereas inserts affect the
pre value at their insert location.

Based on the information contained in the AUC, distance
values can be adjusted explicitly as follows. The mapping

B E F

A

C D G

(0,1)

(1,1)

(2,1)

(3,3)

(2,1) (5,1)

(4,4)

B E FE...
p n-1

B C

A
(0)

(1) (2)

1. ins(2, Y)
2. ins(1, X)

B C

A
(0)

(2) (4)(1) (3)

X Y

2 n1 ...

L0

L1

B D

A

C

(0,1)

(1,1)

(2,1)

(3,3) 1. ins(3,0,Y)
2. ins(2,1,X) B D

A

C

(0,1)

(1,1)

(3,2)

(5,5)

X
(2,1)

Y
(4,4)

BA C BA X

0 1 2 0 1

DEL INS

CY

2 3

INS

1. ins(2,Y)
2. ins(2,X)
3. del(0)

Wednesday, September 11, 13

(a) Bulk update consisting of two insertions and one deletion

atomic Þrst affected tuple shifts accum. shifts
del(0) 1 (0) ! 1 ! 1
ins(2,X) 2 (2) 1 0
ins(2,Y) 2 (3) 1 1

(b) Corresponding AUC in document order

Fig. 3: Mapping pre values before and after bulk update

2.4. Pre/Dist/Size Mapping

Figure 2.4: Directory of logical pages: a) initial state for a page size of 4096 bytes,
b) deletion of 100 nodes, and c) insertion of 100 nodes

Figure 2.4 illustrates an exemplary directory, for which the size of a logical page was set

to 4096 bytes, in compliance with the size of a typical disk page. As one tuple occupies

16 bytes, a maximum of 256 tuples is stored per page. In 2.4 b), a noden has been

deleted; its 99 descendants (size(n) = 100) have all been located in the Þrst pagep.

After the deletion and the update of all size values of the ancestors of noden, size(n) is

subtracted from all subsequent entriesp + 1 in the directory. Example 2.4 c) shows the

mapping after an insert operation: 100 nodes are inserted atpre = 256, resulting in the

creation of a new page (here: 5) at the end of the existing pages and the insertion of a

new entry in the directory.

Even for large databases, the directory will stay comparatively small, so that it can be

usually kept in main memory. Let P be the number of tuples per page, which is the page

size divided by the tuple size, andmax(db) the maximum database size. Ifn values need

to be stored per dictionary entry, a total of n ·max (db)
P values needs to be handled, yielding

2á231/(4096/16) = 16777216integers and a memory consumption of 64 MiB in our rep-

resentation. Although the deletion and insertion of dictionary entries requires copying

large main memory areas, the operation is cheap, compared to update operations on

disk. If even larger pre ranges are to be supported, or if update performance proves to

be too inefÞcient for large database instances, the dictionary structure can be extended

to a conventional B-Tree and stored on disk [BM72].

MONETDB/XQUERY, which is based on the pre/ size/ level encoding, offers a similar

solution by adding a new pos/ size/ level table to the storage, which is divided into logical

pages [BMR05]. The original table serves as a view on the new table with all pages in

order. A new node property resembles theid property in our representation and serves

as unique node identiÞer. As attributes are stored in extra tables, an additional table

mapsnode to pos values. Pages may contain gaps to improve page locking behavior for

the update of ancestor nodes. Ð A different solution has been chosen in our context, as

the presented directory is very light-weight and does not require extra tables. Next, the

24

Fig. 2: Deletion and insertion using logical pages

hard to predict as it highly depends on the document structure.
As the nodes to update lie on the following-sibling axes ofA
and of all its parents, the worst case requiresO(|T |) updates.
Since dist values are represented explicitly in the table, these
update costs cannot be reduced as in the case of pre values.

Finally, the size value has to be updated assize(ti) =
size(ti) ± s for all tuples ti ! T for which pre(ti) < l <
pre(ti) + size(ti), i.e., all ancestors ofA. Therefore, the cost
of updating the size values is bounded by the height of the
documentO(log|T |) in general andO(|T |) in the worst case.

III. E FFICIENT STRUCTURAL BULK UPDATES

As explained in the previous section, distance adjustments
are the dominating factor in the cost of atomic structural
updates in the Pre/Dist/Size encoding. Additionally, the same
distances are often adjusted multiple times in a sequence of
updates. In order to reduce overall processing time of such bulk
updates, the goal of this work is to avoid redundant distance
adjustments without adding excessive overhead.

In contrast to the na¬õve approach, where distances are
iteratively adjusted with each atomic update, the proposed
technique adjusts distancesexplicitly after all updates have
been applied. This approach is enabled by a data structure,
namedAtomic Update Cache(AUC), which holds all atomic
updates of one bulk update. The AUC is organized as a table
that stores atomic updates in document order of their location.
For each atomic update, the pre value of the Þrst affected tuple
in the sequential table is recorded. Additionally, the number
of tuples shifted by each individual update as well as the
accumulated number of tuples shifted by the update and all
its preceding updates is stored. In this section, we present a
technique for efÞcient bulk updates that is based on this AUC.

A. Avoiding Redundant Distance Adjustments

Our method to avoid repeated and therefore redundant
distance adjustments is based on four observations that apply
to bulk updates in the presence of the described AUC. Based
on examples, we motivate each observation and demonstrate
how it contributes to supporting efÞcient bulk updates.

Observation 1:If updates are applied in reverse document
order, adjusting distance values can be delayed until the very
last step of the updating process.

If a sequence of updates is executed from the highest to
the lowest pre value, re-computation of the individual update
locations is avoided. A tuplet is only shifted if the number of
nodes changes in the interval[0, pre(t)]. Similarly, distance
values are only adjusted if the number of nodes changes

between a child and its parent. Inserting or deleting a tuple only
invalidates the distances of following tuples. Therefore, the part
of the sequential table that is accessed by consecutive atomic
updates during a bulk update always remains valid. Based on
this fact, distance adjustments can be delayed altogether by
applying atomic updates as follows.

1) Traverse atomic updates in the AUC back to front,
i.e., in reverse document order.

2) Insert or delete the corresponding nodes, implicitly
shift pre values of the following tuples, adjust the
size values of the ancestors, but leave distances.

3) After applying all atomic updates, restore the tree
structure by adjusting distances in anefÞcientmanner.

We now focus on the third step as it determines the overall
performance of the proposed technique.

Observation 2: The contents of the AUC serve as a bi-
directional mappingpreold (ti) " prenew (ti) between the pre
value of a tuple before and after the bulk update.

To substantiate this observation, we discuss how the above-
mentioned information on shifts and accumulated shifts con-
tained in the AUC is initialized and used. Figure 3a shows
the effect of a bulk update consisting of two inserts and one
delete on a document that contains nodes<A>, , and
<C> as siblings. The pre values of the nodes in the sequential
table are displayed above the nodes. Note that the atomic
updates of this bulk update are applied in reverse document
order. As a consequence, the repeated insertion at position
2, Þrst <Y> then <X>, yields the intended sequence. The
corresponding AUC in document order is given in Figure 3b.
The shifts column records the number of tuple shifts and can
be calculated based on the size of the inserted or deleted tree.
Since we insert and delete single nodes in our examples, the
number of shifts is always1 or # 1, respectively. Column
accum. shiftslists the accumulated number of individual tuple
shifts in document order. Finally, theÞrst affected tuplecolumn
contains the lowest pre value that is shifted as a consequence
of the corresponding atomic update. Atomic deletes affect the
Þrst pre value on the following axis, whereas inserts affect the
pre value at their insert location.

Based on the information contained in the AUC, distance
values can be adjusted explicitly as follows. The mapping

B E F

A

C D G

(0,1)

(1,1)

(2,1)

(3,3)

(2,1) (5,1)

(4,4)

B E FE...
p n-1

B C

A
(0)

(1) (2)

1. ins(2, Y)
2. ins(1, X)

B C

A
(0)

(2) (4)(1) (3)

X Y

2 n1 ...

L0

L1

B D

A

C

(0,1)

(1,1)

(2,1)

(3,3) 1. ins(3,0,Y)
2. ins(2,1,X) B D

A

C

(0,1)

(1,1)

(3,2)

(5,5)

X
(2,1)

Y
(4,4)

BA C BA X

0 1 2 0 1

DEL INS

CY

2 3

INS

1. ins(2,Y)
2. ins(2,X)
3. del(0)

Wednesday, September 11, 13

(a) Bulk update consisting of two insertions and one deletion

atomic first affected tuple shifts accum. shifts
del(0) 1 (0) ! 1 ! 1
ins(2,X) 2 (2) 1 0
ins(2,Y) 2 (3) 1 1

(b) Corresponding AUC in document order

Fig. 3: Mapping pre values before and after bulk update

Results 2010 Apple iMac, Intel Core i3 3.2 GHz, 8 GB RAM,1 TB hard-

disk drive, BaseX 7.3, 7.7 (AUC), OS X 10.8.4, Oracle Java 7.12, -Xmx6G,
XMark data

Bulk Update Stages

Þll ! constraints apply updates adjust Dist text adjacency

Filling the AUC is non-trivial. How to map XQUF primitives to atomic
updates without violating the document order? Each update primitive
operates on a target node and affects a speciÞc table location. Two primitives
can be ordered by a four-step comparison:

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic lazy rapid lazy/rapid

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0

0.25

0.50

0.75

1.00

1MB 11MB 116MB 1.1GB 11.7GB

rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

Saturday, October 5, 13

(a) Total bulk update processing time (ms)

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

Sunday, October 6, 13

(b) Breakdown of delete processing time (ms)

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

Sunday, October 6, 13

(c) Breakdown of insert processing time (ms)

Fig. 11: Summary of the results of the quality improvement study

¥ Structurals accumulates the time for node deletion,
updating of size values and shifting successor tuples
on disk.

¥ Distancestimes distance adjustments, including the
calculation of the appropriate node set, calculation of
the new distances, and writing distances to disk. It also
includes the time for computing the pre value mapping
(seeMapping).

¥ Mappingaccumulates time spent to map old pre values
to new ones and vice-versa. The mapping operation is
processed entirely in main memory.

¥ Adjacencycaptures the time spent for all text node
adjacency-related operations, which includes checks
and the actual resolution.

The processing times forDistances, Mapping, andAdjacency
all increase linearly with the document size and do therefore
not explain the overall deterioration. However, it can be
observed that the time spent onStructurals increases and,
towards the end, accounts for almost the complete processing
time. Having addressed expensive distance adjustments, the
new dominating factor in a structural bulk update is the actual
deletion of nodes on disk and shifting tuples. Rather than
being linked to the technique presented in this paper, this effect
is due to the logical paging mechanism of BaseX, described
in Section II. As BaseX simply leaves empty space at the
end of pages in which nodes were deleted, the database does
not shrink in size. Consequently, the probability of cache
misses increases and performance drops disproportionally.
Experiments have shown that, in the case of large databases,
doubling the page size as a means to reduce the overall number
of pages already pays off.

3) Inserts: The performance of inserts is measured using
the following query (Q3) that inserts a new< ndate > element
after every existing< date > element.

for $d in //datereturn
insert node < ndate> 99.99.9999< /ndate> after $d

The trend of the overall results reported in Table IV and plotted
in Figure 11a follows the results for delete bulk update in
Q2. Already for the smallest document size of 1 MB, v77
outperforms v73. Up to a document size of 116 MB, the
processing time increases linearly. In contrast to the previous
experiment, the performance deterioration for inserts already
occurs at the step to the 1.1 GB document. Nevertheless,
inserting about1.8á106 nodes at approximately9á105 locations

in less than two and a half minutes is impressive. To isolate
the reason for this performance drop, we again broke down
the query processing time of Q3 into the components shown
in Figure 11c. As observed with Q2, the insertion of nodes
is by far the most expensive part. WhileMapping scales
well, all tasks that perform I/O operations become increasingly
expensive. Again, the cause for this performance deterioration
is not related to the technique presented in this paper, but due
to the logical paging of BaseX. Upon database creation, BaseX
Þlls logical pages to capacity to minimize the database size. If
new nodes are added, a new logical page has to be appended
after the sequence of all existing pages on disk and the page
directory keeps track of document order. This is detrimental
in two ways. First, a lot of partially Þlled pages are created,
as there is no redistribution of existing tuples between existing
pages. Second, the database is no longer contiguously stored on
disk, but logically inserted nodes in the middle of the document
are stored physically at the end of the table. These issues
greatly increase the number of I/O operations as the document
size grows. Adding a text node contributes in the same manner,
as the inserted text has to be added to the appropriate Þle.

4) Replaces:Finally, we evaluate the different optimiza-
tions for replace operations that have been introduced in
Section IV. Recall that therapid replace aims at reducing
processing time, whereas the goal of thelazy is to avoid
fragmentation. To analyze these optimizations and to compare
them, we have measured their run-time performance in a
number of setups (including the worst-case) and in two distinct
scenarios.

Even: The replacing and the replaced tree have the
same size or node count. Therefore, successor tuples do not
have to be shifted. We use the following XQuery expression
for this comparison. The size of thepeoplesubtree for different
documents is given in Table III.

replace node //peoplewith //people

Uneven: We replace the target node< people > with
the< europe > subtree, which is about half the size, using the
XQuery expression below. As the two trees do not feature the
same structure,lazy replace cannot be applied. Nevertheless,
the unevencomparison can quantify the beneÞts of therapid
replace better.

replace node //peoplewith //europe

In order to get comparable results, the individual replace
approaches are explicitly activated in the code. A modiÞed

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic lazy rapid lazy/rapid

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0

0.25

0.50

0.75

1.00

1MB 11MB 116MB 1.1GB 11.7GB

rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

Saturday, October 5, 13

(a) Total bulk update processing time (ms)

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

Sunday, October 6, 13

(b) Breakdown of delete processing time (ms)

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

Sunday, October 6, 13

(c) Breakdown of insert processing time (ms)

Fig. 11: Summary of the results of the quality improvement study

¥ Structurals accumulates the time for node deletion,
updating of size values and shifting successor tuples
on disk.

¥ Distancestimes distance adjustments, including the
calculation of the appropriate node set, calculation of
the new distances, and writing distances to disk. It also
includes the time for computing the pre value mapping
(seeMapping).

¥ Mappingaccumulates time spent to map old pre values
to new ones and vice-versa. The mapping operation is
processed entirely in main memory.

¥ Adjacencycaptures the time spent for all text node
adjacency-related operations, which includes checks
and the actual resolution.

The processing times forDistances, Mapping, andAdjacency
all increase linearly with the document size and do therefore
not explain the overall deterioration. However, it can be
observed that the time spent onStructurals increases and,
towards the end, accounts for almost the complete processing
time. Having addressed expensive distance adjustments, the
new dominating factor in a structural bulk update is the actual
deletion of nodes on disk and shifting tuples. Rather than
being linked to the technique presented in this paper, this effect
is due to the logical paging mechanism of BaseX, described
in Section II. As BaseX simply leaves empty space at the
end of pages in which nodes were deleted, the database does
not shrink in size. Consequently, the probability of cache
misses increases and performance drops disproportionally.
Experiments have shown that, in the case of large databases,
doubling the page size as a means to reduce the overall number
of pages already pays off.

3) Inserts: The performance of inserts is measured using
the following query (Q3) that inserts a new< ndate > element
after every existing< date > element.

for $d in //datereturn
insert node < ndate> 99.99.9999< /ndate> after $d

The trend of the overall results reported in Table IV and plotted
in Figure 11a follows the results for delete bulk update in
Q2. Already for the smallest document size of 1 MB, v77
outperforms v73. Up to a document size of 116 MB, the
processing time increases linearly. In contrast to the previous
experiment, the performance deterioration for inserts already
occurs at the step to the 1.1 GB document. Nevertheless,
inserting about1.8á106 nodes at approximately9á105 locations

in less than two and a half minutes is impressive. To isolate
the reason for this performance drop, we again broke down
the query processing time of Q3 into the components shown
in Figure 11c. As observed with Q2, the insertion of nodes
is by far the most expensive part. WhileMapping scales
well, all tasks that perform I/O operations become increasingly
expensive. Again, the cause for this performance deterioration
is not related to the technique presented in this paper, but due
to the logical paging of BaseX. Upon database creation, BaseX
Þlls logical pages to capacity to minimize the database size. If
new nodes are added, a new logical page has to be appended
after the sequence of all existing pages on disk and the page
directory keeps track of document order. This is detrimental
in two ways. First, a lot of partially Þlled pages are created,
as there is no redistribution of existing tuples between existing
pages. Second, the database is no longer contiguously stored on
disk, but logically inserted nodes in the middle of the document
are stored physically at the end of the table. These issues
greatly increase the number of I/O operations as the document
size grows. Adding a text node contributes in the same manner,
as the inserted text has to be added to the appropriate Þle.

4) Replaces:Finally, we evaluate the different optimiza-
tions for replace operations that have been introduced in
Section IV. Recall that therapid replace aims at reducing
processing time, whereas the goal of thelazy is to avoid
fragmentation. To analyze these optimizations and to compare
them, we have measured their run-time performance in a
number of setups (including the worst-case) and in two distinct
scenarios.

Even: The replacing and the replaced tree have the
same size or node count. Therefore, successor tuples do not
have to be shifted. We use the following XQuery expression
for this comparison. The size of thepeoplesubtree for different
documents is given in Table III.

replace node //peoplewith //people

Uneven: We replace the target node< people > with
the< europe > subtree, which is about half the size, using the
XQuery expression below. As the two trees do not feature the
same structure,lazy replace cannot be applied. Nevertheless,
the unevencomparison can quantify the beneÞts of therapid
replace better.

replace node //peoplewith //europe

In order to get comparable results, the individual replace
approaches are explicitly activated in the code. A modiÞed

Q1 delete node //date

Q2 for $d in //date return

 insert node <ndate>99</ndate>
 after $d

Observations

¥ AUC improves performance by
magnitude

¥ much faster distance adjustment

¥ still quadratic complexity for bigger
documents

¥ insertion/deletion of records is the
new bottleneck (structurals)

Keeping records in document
order is the new limiter

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic lazy rapid lazy/rapid

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0

0.25

0.50

0.75

1.00

1MB 11MB 116MB 1.1GB 11.7GB

rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

Saturday, October 5, 13

(a) Total bulk update processing time (ms)

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

Sunday, October 6, 13

(b) Breakdown of delete processing time (ms)

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

v77 deletes v77 inserts v73 deletes v73 inserts

1E+01

1E+03

1E+05

1MB 11MB 116MB 1.1GB 11.7GB

basic rapid

0.50

0.70

0.90

1.10

1MB 11MB 116MB 1.1GB 11.7GB

lazy rapid lazy/rapid uneven rapid basic

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

1E-01

1E+01

1E+03

1E+05

1E+07

1MB 11MB 116MB 1.1GB 11.7GB

adjacency mapping distances structurals overall

Sunday, October 6, 13

(c) Breakdown of insert processing time (ms)

Fig. 11: Summary of the results of the quality improvement study

• Structurals accumulates the time for node deletion,
updating of size values and shifting successor tuples
on disk.

• Distances times distance adjustments, including the
calculation of the appropriate node set, calculation of
the new distances, and writing distances to disk. It also
includes the time for computing the pre value mapping
(seeMapping).

• Mapping accumulates time spent to map old pre values
to new ones and vice-versa. The mapping operation is
processed entirely in main memory.

• Adjacency captures the time spent for all text node
adjacency-related operations, which includes checks
and the actual resolution.

The processing times forDistances, Mapping, andAdjacency
all increase linearly with the document size and do therefore
not explain the overall deterioration. However, it can be
observed that the time spent onStructurals increases and,
towards the end, accounts for almost the complete processing
time. Having addressed expensive distance adjustments, the
new dominating factor in a structural bulk update is the actual
deletion of nodes on disk and shifting tuples. Rather than
being linked to the technique presented in this paper, this effect
is due to the logical paging mechanism of BaseX, described
in Section II. As BaseX simply leaves empty space at the
end of pages in which nodes were deleted, the database does
not shrink in size. Consequently, the probability of cache
misses increases and performance drops disproportionally.
Experiments have shown that, in the case of large databases,
doubling the page size as a means to reduce the overall number
of pages already pays off.

3) Inserts: The performance of inserts is measured using
the following query (Q3) that inserts a new< ndate > element
after every existing< date > element.

for $d in //datereturn
insert node < ndate> 99.99.9999< /ndate> after $d

The trend of the overall results reported in Table IV and plotted
in Figure 11a follows the results for delete bulk update in
Q2. Already for the smallest document size of 1 MB, v77
outperforms v73. Up to a document size of 116 MB, the
processing time increases linearly. In contrast to the previous
experiment, the performance deterioration for inserts already
occurs at the step to the 1.1 GB document. Nevertheless,
inserting about1.8·106 nodes at approximately9·105 locations

in less than two and a half minutes is impressive. To isolate
the reason for this performance drop, we again broke down
the query processing time of Q3 into the components shown
in Figure 11c. As observed with Q2, the insertion of nodes
is by far the most expensive part. WhileMapping scales
well, all tasks that perform I/O operations become increasingly
expensive. Again, the cause for this performance deterioration
is not related to the technique presented in this paper, but due
to the logical paging of BaseX. Upon database creation, BaseX
Þlls logical pages to capacity to minimize the database size. If
new nodes are added, a new logical page has to be appended
after the sequence of all existing pages on disk and the page
directory keeps track of document order. This is detrimental
in two ways. First, a lot of partially Þlled pages are created,
as there is no redistribution of existing tuples between existing
pages. Second, the database is no longer contiguously stored on
disk, but logically inserted nodes in the middle of the document
are stored physically at the end of the table. These issues
greatly increase the number of I/O operations as the document
size grows. Adding a text node contributes in the same manner,
as the inserted text has to be added to the appropriate Þle.

4) Replaces: Finally, we evaluate the different optimiza-
tions for replace operations that have been introduced in
Section IV. Recall that therapid replace aims at reducing
processing time, whereas the goal of thelazy is to avoid
fragmentation. To analyze these optimizations and to compare
them, we have measured their run-time performance in a
number of setups (including the worst-case) and in two distinct
scenarios.

Even: The replacing and the replaced tree have the
same size or node count. Therefore, successor tuples do not
have to be shifted. We use the following XQuery expression
for this comparison. The size of thepeople subtree for different
documents is given in Table III.

replace node //peoplewith //people

Uneven: We replace the target node< people > with
the< europe > subtree, which is about half the size, using the
XQuery expression below. As the two trees do not feature the
same structure,lazy replace cannot be applied. Nevertheless,
the uneven comparison can quantify the beneÞts of therapid
replace better.

replace node //peoplewith //europe

In order to get comparable results, the individual replace
approaches are explicitly activated in the code. A modiÞed

Q1

Q2

Conclusion
¥ EfÞcient Structural Bulk Updates exploit the XQUF conditions
¥ little overhead is added in the form of the AUC
¥ the tree structure is efÞciently restored after updates
¥ Pre/Dist/Size reduces advantage of preÞx labelling schemas (bulk updates)
¥ Document order is the new limiter

¥ Pre: node position during pre-order
traversal

¥ Dist: # nodes between self and parent

¥ Size: # nodes in subtree + 1

Ordering Update Primitives

Hierarchical comparison

1. location 2. subtree

3. target 4. rank

B C

A P1: delete B!
P2: insert X after C

X P2 > P1

P1: insert Y into A!
P2: insert X into B

P1 > P2B

A

Y

X

P1: insert Y before C!
P2: insert X after B

P1 > P2B

A

YX C

P1: insert before B!
P2: insert after B

P2 > P1

insert before
delete
replace
rename
É

rank
0
1
2
3

Ordering Update Primitives

Hierarchical comparison

1. location 2. subtree

3. target 4. rank

B C

A P1: delete B!
P2: insert X after C

X P2 > P1

P1: insert Y into A!
P2: insert X into B

P1 > P2B

A

Y

X

P1: insert Y before C!
P2: insert X after B

P1 > P2B

A

YX C

P1: insert before B!
P2: insert after B

P2 > P1

insert before
delete
replace
rename
É

rank
0
1
2
3

Ordering Update Primitives

Hierarchical comparison

1. location 2. subtree

3. target 4. rank

B C

A P1: delete B!
P2: insert X after C

X P2 > P1

P1: insert Y into A!
P2: insert X into B

P1 > P2B

A

Y

X

P1: insert Y before C!
P2: insert X after B

P1 > P2B

A

YX C

P1: insert before B!
P2: insert after B

P2 > P1

insert before
delete
replace
rename
É

rank
0
1
2
3

Ordering Update Primitives

Hierarchical comparison

1. location 2. subtree

3. target 4. rank

B C

A P1: delete B 
P2: insert X after C

X P2 > P1

P1: insert Y into A 
P2: insert X into B

P1 > P2B

A

Y

X

P1: insert Y before C 
P2: insert X after B

P1 > P2B

A

YX C

P1: insert before B 
P2: insert after B

P2 > P1

insert before
delete
replace
rename
É

rank
0
1
2
3

Lukas Kircher, Michael Grossniklaus, Christian GrŸn, and Marc H. Scholl
Department of Computer and Information Science

Database & Information Systems (DBIS) Group
University of Konstanz

P.O. Box 188, 78457 Konstanz, Germany
Þrstname.lastname@uni.kn

mailto:firstname.lastname@uni.kn
mailto:firstname.lastname@uni.kn

