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Abstract—In order to manage XML documents, native XML
databases use specific encodings that map the hierarchical struc-
ture of a document to a flat representation. Several encodings
have been proposed that differ in terms of their support for
certain query workloads. While some encodings are optimized
for query processing, others focus on data manipulation. For
example, the Pre/Dist/Size XML encoding has been designed to
support queries over all XPath axes efficiently, but processing
atomic updates in XML documents can be costly. In this paper,
we present a technique, so-called structural bulk updates, that
works in concert with the XQuery Update Facility to support
efficient updates on the Pre/Dist/Size encoding. We demonstrate
the benefits of our technique in a detailed performance evaluation
based on the XMark benchmark.

I. INTRODUCTION

The XQuery Update Facility (XQUF) [4] introduces
data manipulation capabilities to the XML query language
XQuery [14] by extending both the syntax and the processing
model of XQuery. Syntax extensions consist of a set of update
operations to insert, delete, replace, and copy nodes in an
XML document. When used in a query, each individual update
operation leads to one or more update primitives. To manage
these update primitives during query execution, the XQuery
processing model is enriched with a data structure called the
Pending Update List (PUL). The XQUF specification defines
the PUL as “an unordered collection of update primitives [. . . ]
that have not yet been applied” (§2.1).

The main objective of the PUL is to realize atomicity,
consistency, and isolation by caching all update operations
that are to be executed within a transaction or snapshot. Only
after checking whether the application of the pending update
list leads to a consistent state of the database, all updates are
applied in one single bulk operation at the end of the query or
snapshot. This processing model mainly serves the following
purposes. First, changes introduced during a snapshot are only
visible in succeeding queries. Second, update primitives can
be applied in a specific order defined by the XQUF to resolve
ambiguities. Finally, insertion sequences (for insert, replace,
etc.) are cached to avoid dirty reads.

Since the structural order of the XML document has to be
maintained when it is modified, processing individual updates
can be costly. A major factor that determines the exact cost
of an update operation is the XML encoding that maps the
hierarchical structure of the document to a flat representation.
Several XML encodings have been proposed that all balance
the trade-off between query and update runtime performance
slightly differently. In general, these encodings fall into one

of two categories. Prefix-based encodings use variable-length
labels that represent the position of a node, whereas interval
or region-based encodings physically store nodes in order,
typically based on a pre-order traversal of the document tree.

Since the encoding used in a given native XML database
is fixed, the trade-off between query and update performance
cannot be influenced for individual update operations. How-
ever, we argue that one major advantage of the PUL is the fact
that it provides the opportunity to tailor the processing of bulk
updates to the underlying encoding scheme. Our hypothesis
is that analyzing the characteristics of the bulk update and
optimizing the sequence of atomic updates can amortize part
of the cost that would be incurred by executing atomic updates
naı̈vely one after another. In this paper, we test this hypothesis
in the setting of the Pre/Dist/Size encoding. The contributions
of the work presented in this paper are as follows.

1) Optimization technique for bulk updates to reduce
processing time with respect to a series of atomic
updates.

2) XQUF implementation that leverages this technique.
3) Quantification of the benefit based on bulk update

processing times with and without optimization.

Correspondingly, the paper is structured as follows. Section II
gives an overview of the Pre/Dist/Size XML encoding that is
used in this work. In Section III, we introduce efficient bulk
updates and in Section IV, we present related optimizations
that are enabled by bulk updates. Section V discusses how
bulk updates are leveraged to implement XQUF. We evaluate
our work in Section VI and discuss related work in Section VII.
Finally, concluding remarks are given in Section VIII.

II. THE PRE/DIST/SIZE XML ENCODING

The work presented in this paper is situated in the context
of the Pre/Dist/Size XML encoding [7]. In this section, we
review this encoding, highlight its advantages with respect to
querying and discuss its limitations with respect to updating.
Pre/Dist/Size belongs to the family of interval or region-based
XML encodings that use partitions of the pre/post plane [8]
to represent the hierarchical document structure. The XML
encodings in this family have two major advantages. First,
each node in an XML document can be mapped to a fixed-
length record and, second, these encodings support efficient
queries over the XPath axes [5]. A drawback shared by these
encodings is the fact that updates to the XML document often
require several changes throughout the mapping table.
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<A>
<B>

<C/><D/>
</B>
<E/>
<F>

<G/>
</F>

</A>

(a) Example document
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Wednesday, September 4, 13

(b) Tree with (pre,dist) tuples

pre dist size val
0 1 7 A
1 1 3 B
2 1 1 C
3 2 1 D
4 4 1 E
5 5 2 F
6 1 1 G

(c) Sequential table

pre dist size val
0 1 6 A
1 1 2 B
2 1 1 D
3 3 1 E
4 4 2 F
5 1 1 G

(d) Table after update

Fig. 1: Relational Pre/Dist/Size encoding of example XML document.

Figure 1 explains the Pre/Dist/Size encoding. A sample
XML document is given in Figure 1a with its tree represen-
tation shown in Figure 1b. Pre/Dist/Size uses three values to
encode the document structure. The pre value is the position of
the node in the tree pre-order traversal. As shown in Figure 1c,
pre values determine the position of records in the sequential
table. The dist value encodes the parent of a node as the relative
distance in the sequential table. For example, the parent of
<F> is <A>, since pre(F )− dist(F ) = pre(A). Finally, the
size value denotes the number of descendant elements of a
node (including the node itself).

A. Querying the Pre/Dist/Size Encoding

In XQuery [14], queries over the structure of an XML
document are typically expressed in terms of XPath axes. We
show in the following how queries over each of these axes can
be efficiently evaluated based on the Pre/Dist/Size encoding.

• As seen above, a parent node p of a node n has the
pre value pre(p) = pre(n)− dist(n).

• The first child node c1 of a node n is found at
pre(c1) = pre(n)+1. All other child nodes ci can be
found by iteratively adding the size of the current child
to its pre value, i.e., pre(ci) = pre(ci−1)+size(ci−1),
until pre(ci) ≥ pre(n) + size(n).

• The ancestors of a node n are computed by iteratively
calculating the parent of the current node ni, until
pre(ni) = 0.

• All descendants of a node n are located in the interval
[pre(n) + 1, pre(n) + size(n)− 1] and can be read
sequentially from the table.

• To find the preceding-siblings of a node n, the parent
node p is first determined and then all child nodes ci
are returned until ci = n.

• Similarly, the following-siblings of a node n are
found through its parent p by starting with ci = n
and iterating over all child nodes until pre(ci) ≥
pre(p) + size(p).

• The set of preceding nodes of a node n is calculated
as all nodes in the interval [0, pre(n)− 1] minus all
ancestor nodes of n.

• The set of following nodes of a node n is given by all
nodes the interval [pre(n) + size(n), |T | − 1], where
|T | is the cardinality of the sequential table T .

All other axes are either trivial (e.g., self ) or combinations
of already presented axes (e.g., ancestor-or-self, descendant-
or-self, etc.) and can thus be evaluated accordingly.

B. Updating the Pre/Dist/Size Encoding

In XML databases, two types of (atomic) updates can
be distinguished. First, value updates change the value of
an element in the document and, second, structural updates
change the document structure itself. In the Pre/Dist/Size
encoding, value updates can be implemented efficiently by
simply updating the val value in the sequential table. Structural
updates, however, can be costly. For example, suppose that
element <C> is to be deleted in the example document shown
in Figure 1. The resulting sequential table, which highlights
the required changes in bold, is shown in Figure 1d. We now
examine the effects of inserts and deletes on the Pre/Dist/Size
encoding in more detail as this understanding is the basis for
the structural bulk update technique presented in this paper.

Let us assume that we insert (or delete) a document A of
size s at position l in the sequential table T . The pre values of
all tuples ti ∈ T with pre(ti) ∈ [0, l − 1] remain unchanged,
whereas all pre values pre(ti) ∈ [l, |T |] have to be recalculated
as pre(ti) = pre(ti) ± s, depending on whether the update
is an insert (+) or a delete (−). In order to obtain a compact
encoding, pre values are not represented explicitly in the table,
but implicitly by the (physical) row number of the record. In
the worst case, this requires shifting O(|T |) tuples on disk.

Using an (in-memory) logical page directory to map the
first pre value (fpre) of each page pi to its physical address, pre
values can be updated by shifting the tuples in O(1) pages plus
updating the subsequent fpre values as fpre(pi) = fpre(pi)±
fpre(pi−1). Figure 2 illustrates the logical paging mechanism.
Initially, all pages are filled to their capacity of 256 records. On
the left-hand side, 100 records have been deleted from the first
page. Records in subsequent pages are not shifted, but their
fpre value is decremented by 100. On the right-hand side, 100
records are inserted into the first page, which is already full.
Instead of shifting all records, a new page is allocated to hold
the records and the page directory is updated accordingly.1

The dist value of all tuples ti ∈ T for which (pre(ti) −
dist(ti)) < l ≤ pre(ti) needs to be recalculated as dist(ti) =
dist(ti) ± size. The actual cost of updating the distances is

1Note that this technique is similar to the use of the Pos/Size/Level table in
MonetDB/XQuery [3], which is based on the Pre/Size/Level XML encoding.



2.4. Pre/Dist/Size Mapping
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Figure 2.4: Directory of logical pages: a) initial state for a page size of 4096 bytes,
b) deletion of 100 nodes, and c) insertion of 100 nodes

Figure 2.4 illustrates an exemplary directory, for which the size of a logical page was set
to 4096 bytes, in compliance with the size of a typical disk page. As one tuple occupies
16 bytes, a maximum of 256 tuples is stored per page. In 2.4 b), a node n has been
deleted; its 99 descendants (size(n) = 100) have all been located in the first page p.
After the deletion and the update of all size values of the ancestors of node n, size(n) is
subtracted from all subsequent entries p + 1 in the directory. Example 2.4 c) shows the
mapping after an insert operation: 100 nodes are inserted at pre = 256, resulting in the
creation of a new page (here: 5) at the end of the existing pages and the insertion of a
new entry in the directory.

Even for large databases, the directory will stay comparatively small, so that it can be
usually kept in main memory. Let P be the number of tuples per page, which is the page
size divided by the tuple size, and max(db) the maximum database size. If n values need
to be stored per dictionary entry, a total of n·max(db)

P

values needs to be handled, yielding
2 · 231/(4096/16) = 16777216 integers and a memory consumption of 64 MiB in our rep-
resentation. Although the deletion and insertion of dictionary entries requires copying
large main memory areas, the operation is cheap, compared to update operations on
disk. If even larger pre ranges are to be supported, or if update performance proves to
be too inefficient for large database instances, the dictionary structure can be extended
to a conventional B-Tree and stored on disk [BM72].

MONETDB/XQUERY, which is based on the pre/size/level encoding, offers a similar
solution by adding a new pos/size/level table to the storage, which is divided into logical
pages [BMR05]. The original table serves as a view on the new table with all pages in
order. A new node property resembles the id property in our representation and serves
as unique node identifier. As attributes are stored in extra tables, an additional table
maps node to pos values. Pages may contain gaps to improve page locking behavior for
the update of ancestor nodes. – A different solution has been chosen in our context, as
the presented directory is very light-weight and does not require extra tables. Next, the
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Fig. 2: Deletion and insertion using logical pages

hard to predict as it highly depends on the document structure.
As the nodes to update lie on the following-sibling axes of A
and of all its parents, the worst case requires O(|T |) updates.
Since dist values are represented explicitly in the table, these
update costs cannot be reduced as in the case of pre values.

Finally, the size value has to be updated as size(ti) =
size(ti) ± s for all tuples ti ∈ T for which pre(ti) < l <
pre(ti) + size(ti), i.e., all ancestors of A. Therefore, the cost
of updating the size values is bounded by the height of the
document O(log|T |) in general and O(|T |) in the worst case.

III. EFFICIENT STRUCTURAL BULK UPDATES

As explained in the previous section, distance adjustments
are the dominating factor in the cost of atomic structural
updates in the Pre/Dist/Size encoding. Additionally, the same
distances are often adjusted multiple times in a sequence of
updates. In order to reduce overall processing time of such bulk
updates, the goal of this work is to avoid redundant distance
adjustments without adding excessive overhead.

In contrast to the naı̈ve approach, where distances are
iteratively adjusted with each atomic update, the proposed
technique adjusts distances explicitly after all updates have
been applied. This approach is enabled by a data structure,
named Atomic Update Cache (AUC), which holds all atomic
updates of one bulk update. The AUC is organized as a table
that stores atomic updates in document order of their location.
For each atomic update, the pre value of the first affected tuple
in the sequential table is recorded. Additionally, the number
of tuples shifted by each individual update as well as the
accumulated number of tuples shifted by the update and all
its preceding updates is stored. In this section, we present a
technique for efficient bulk updates that is based on this AUC.

A. Avoiding Redundant Distance Adjustments

Our method to avoid repeated and therefore redundant
distance adjustments is based on four observations that apply
to bulk updates in the presence of the described AUC. Based
on examples, we motivate each observation and demonstrate
how it contributes to supporting efficient bulk updates.

Observation 1: If updates are applied in reverse document
order, adjusting distance values can be delayed until the very
last step of the updating process.

If a sequence of updates is executed from the highest to
the lowest pre value, re-computation of the individual update
locations is avoided. A tuple t is only shifted if the number of
nodes changes in the interval [0, pre(t)]. Similarly, distance
values are only adjusted if the number of nodes changes

between a child and its parent. Inserting or deleting a tuple only
invalidates the distances of following tuples. Therefore, the part
of the sequential table that is accessed by consecutive atomic
updates during a bulk update always remains valid. Based on
this fact, distance adjustments can be delayed altogether by
applying atomic updates as follows.

1) Traverse atomic updates in the AUC back to front,
i.e., in reverse document order.

2) Insert or delete the corresponding nodes, implicitly
shift pre values of the following tuples, adjust the
size values of the ancestors, but leave distances.

3) After applying all atomic updates, restore the tree
structure by adjusting distances in an efficient manner.

We now focus on the third step as it determines the overall
performance of the proposed technique.

Observation 2: The contents of the AUC serve as a bi-
directional mapping preold(ti) ↔ prenew(ti) between the pre
value of a tuple before and after the bulk update.

To substantiate this observation, we discuss how the above-
mentioned information on shifts and accumulated shifts con-
tained in the AUC is initialized and used. Figure 3a shows
the effect of a bulk update consisting of two inserts and one
delete on a document that contains nodes <A>, <B>, and
<C> as siblings. The pre values of the nodes in the sequential
table are displayed above the nodes. Note that the atomic
updates of this bulk update are applied in reverse document
order. As a consequence, the repeated insertion at position
2, first <Y> then <X>, yields the intended sequence. The
corresponding AUC in document order is given in Figure 3b.
The shifts column records the number of tuple shifts and can
be calculated based on the size of the inserted or deleted tree.
Since we insert and delete single nodes in our examples, the
number of shifts is always 1 or −1, respectively. Column
accum. shifts lists the accumulated number of individual tuple
shifts in document order. Finally, the first affected tuple column
contains the lowest pre value that is shifted as a consequence
of the corresponding atomic update. Atomic deletes affect the
first pre value on the following axis, whereas inserts affect the
pre value at their insert location.

Based on the information contained in the AUC, distance
values can be adjusted explicitly as follows. The mapping
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(a) Bulk update consisting of two insertions and one deletion

atomic first affected tuple shifts accum. shifts
del(0) 1 (0) −1 −1
ins(2,X) 2 (2) 1 0
ins(2,Y) 2 (3) 1 1

(b) Corresponding AUC in document order

Fig. 3: Mapping pre values before and after bulk update



preold(ti) → prenew(ti), which gives the new pre value of
a node in the unaltered table, is derived by identifying the
update at the highest index in the AUC that still affects this
node. For example, the mapping preold(B) → prenew(B)
is determined by the delete, which is the operation with the
highest index that still affects the pre value. The AUC gives
an accumulated shift of −1 for this delete and therefore the
mapping is 1 → (1 + (−1)), i.e., the new pre value of B
is 0. Note that in the case of node A, there is no mapping
preold(A) → prenew(A) as the first affected tuple points to A
itself, which is deleted. However, as mappings are only applied
to existing nodes, this is not a problem.

The mapping prenew(ti) → preold(ti), which gives the
original pre value of an already shifted tuple, is calculated
similarly. Eventual tuple shifts have to be taken into account
as the atomic updates have already been applied. Therefore,
this mapping is calculated based on the values for the first
affected tuple that includes accumulated shifts, which are
given in brackets in Figure 3b. For example, for the mapping
prenew(B) → preold(B), the delete operation determines
B’s new pre value as 0, which equals the first affected tuple
including accumulated shifts. To calculate the old pre value
from the new, the effect of the accumulated shifts has to be
reversed. The AUC gives an accumulated shift of −1 for the
delete operation and therefore the mapping is 0 → (0−(−1)),
i.e., the old pre value of B is 1. Note that this mapping also
covers nodes that are inserted during the update process. For
example, with a (new) pre value of 1, node X is only affected
by the delete and it follows that the mapping prenew(X) →
preold(X) is 1 → (1− (−1)), i.e., the old pre value of X is
2, which is the position where it was inserted.

Observation 3: The new distance value of a node can be
explicitly calculated based on its original state and the bi-
directional mapping contained in the AUC.

Recall that the dist value of a node n gives the number of
nodes that are stored between the node and its parent p in the
sequential table. The pre value of the parent is then calculated
as pre(p) = pre(n) − dist(n). However, after performing
all atomic updates of a bulk update, we cannot determine
the number of tuples changed between a node and its parent
directly, since the parent node is no longer known. Therefore,
the updated distance for any given node of the table has to
be calculated based on its original distance value and the bi-
directional mapping contained in the AUC. We demonstrate
how this explicit calculation of distance values can be achieved
using the simple example given in Figure 4.

The original document including (pre, dist) tuples is
shown in Figure 4a. Figure 4b shows the state of the document
after nodes X and Y have been inserted at positions 1 and 2,
which shifts nodes B and C to the back. As distance updates
are delayed, the distances of B and C still represent the orig-
inal state and are therefore invalid after this first step. Based
on the mapping prenew(C) → preold(C), the old pre value
of C (2) can be obtained. Together with C’s original distance,
this value can now be used to calculate the pre value of the
original parent of C (B in Figure 4a) as (2 − 1) = 1. Using
the mapping in the other direction preold(B) → prenew(B),
i.e., 1 → 2, gives us the pre value of C’s new parent (B in
Figure 4c). Finally, it follows that the updated distance of node
C is distnew(C) = (prenew(C)−prenew(B)) or 2 = (4−2).
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(a) Original state
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(b) After inserts with
invalid distances (*)
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(c) After distance ad-
justments (*)

Fig. 4: Distance adjustments after node insertion.

In general, the distance of any node n in the database can
be adjusted explicitly by starting with its new pre value prenew

as follows, where p is the parent of node n.

prenew(n) → preold(n)

preold(p) = preold(n)− distold(n)

preold(p) → prenew(p)

distnew(n) = prenew(n)− prenew(p)

Observation 4: The distances that have to be adjusted
can directly be determined by the sequential table and the
corresponding bulk update.

Based on the AUC, all first tuples that are affected by a
structural update are known and the remaining distances can
be determined through ancestor-or-self and following-sibling
axis steps. Using an additional set to keep track of nodes with
already adjusted distances avoids repetition. As the number of
distance adjustments is minimal, the impact of the order in
which the first affected tuples are visited is negligible.

In a static setting using the ancestor-or-self and following-
sibling axes to describe the sequence of nodes for which
distances are affected relative to the first affected tuple of an
update is valid. In reality, this sequence needs to be determined
dynamically while distance adjustments are being carried out.
The next node is then either calculated via the following axis
relative to the current node or by switching to the next first
affected tuple if the set of following nodes is empty. As a
consequence, it is no longer necessary to access the parent
axis, which saves a few operations (see Figure 5).

A simple example illustrates how the set of nodes for
which distances need to be adjusted is determined. Figure 6a
shows a document with nodes labelled with (pre, dist) tuples.
Distances that are invalid after the insertion of nodes X and Y
are marked with an asterisk. The corresponding AUC is shown
in Table I. The starting points for distance adjustments are
found by traversing the AUC in document order and checking
the first affected tuple entry. In our example, we identify the
nodes with pre values 3 and 7, i.e., C and F , as starting points.
Let S be the set of nodes that have been adjusted already.
We begin by adjusting the distance of C as described above
and add it to S. The pre value of the following node n is
computed as pre(C) + size(C), 3 + 1 = 4, which identifies
node D. This process is repeated for the nodes D, E, and G.
Since pre(G)+size(G) equals the document size, the iteration
ends. S now contains the nodes {C,D,E,G} as their distances
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Fig. 6: Calculating the set of invalid distances.

atomic first affected tuple shifts accum. shifts
ins(2,X) 2 (3) 1 1
ins(5,Y) 5 (7) 1 2

TABLE I: Corresponding update cache in document order

have been adjusted. The other node identified by the AUC is
F , which is the first node affected by the insertion of Y . Its
distance is updated and F is added to S. Calculating the next
node as pre(F ) + size(F ) again yields G. As G is already
contained in S and there are no more unprocessed atomic
updates in the list, the adjustment of distances is finished. The
document with all distances adjusted is shown in Figure 6b.

B. Resolution of Text Adjacency

Up to now, the discussion evolved solely around the
element node type. However, text nodes also need to be
considered as they require special treatment. Adjacent sibling
text nodes can occur if a node that separates two text nodes
with the same parent is deleted, or if a text node is inserted as
a sibling of an existing text node. In both cases, texts have to
be merged as the XQuery Data Model [6] forbids adjacency.
A typical algorithm to implement this merge operation is to
first concatenate the values of two adjacent text nodes in one
of the two nodes and then to delete the other one. Since this
operation leads to structural changes, our technique of delaying
distance updates can be applied as well. As a consequence, we
can revise the algorithm for resolving text node adjacency to
perform the following three steps.

1) Apply atomic updates and distance adjustments.
2) Merge text nodes by concatenating adjacent texts.
3) Delete superfluous text nodes from Step 2 and adjust

distances again.

In the example shown in Figure 7a, node C is deleted
from the tree. Consequently, the AUC holds a single atomic
update del(2, C) with first affected tuple 3, −1 shifts, and
−1 accumulated shifts. First, the location l where adjacency
can occur is directly derived from the AUC by adding the
difference between accumulated shifts and shifts to the location
targeted by the update, i.e., l = 2−1+1 = 2. In case of a delete
the location of the node to merge is given by l< = l− 1 = 1.
The corresponding node is then merged with the following
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Fig. 7: Text node merging after delete

sibling, if possible, by directly concatenating their text values
in the correct order. For the other node, an atomic delete is
created and inserted into a temporary AUC to be executed in
Step 3. The result of this step is shown in Figure 7b. Since
the original AUC only contained one atomic update in this
example, Step 2 is finished. Figure 7c shows the tree after
Step 3 which executes all delete operations gathered in Step 2
and adjusts the distances as discussed above.

Figure 8 shows an example, in which a sequence of
three nodes (‘x’, Y , ‘z’) is inserted with a single atomic
insert. Consequently, the AUC holds the atomic insert ins(2,
Y ) with first affected tuple 2, 3 shifts, and 3 accumulated
shifts. There can be no adjacent text nodes within insertion
sequences as these would have been merged beforehand. The
example focuses on the special case where two text node
merges are necessary as a consequence of a single insert
operation. This case is handled in our approach by checking
the position at the end of the insertion sequence for adjacency.
The location targeted by the update is calculated as above, i.e.,
l = 2+3−3 = 2. In contrast to the previous example, however,
the atomic update is an insert. In this case, the position before
and after the insert need to be checked for possible merges.
As above, the before position is given by l< = l − 1 = 1 and
the after position is given by l> = l + size(‘x’, Y, ‘z’)− 1 =
2 + 3 − 1 = 3. It is important to check locations strictly in
reverse document order to avoid incorrect concatenation and
wrong order of the resulting delete atomics. Therefore, node 4
is first merged with its following sibling and a corresponding
delete operation is inserted into a temporary AUC. Then node
1 is checked, which leads to another concatenation and atomic
delete. The resulting and temporary AUC now holds the two
atomics {del(2), del(5)}. Step 3 is not explained here as it
strictly follows the first example. Finally, Figure 9 shows,
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Fig. 9: Text node merging after combined delete/insert

through a combination of insert and delete, how the algorithm
propagates text concatenation to achieve the desired result.
After Step 2, the temporary AUC contains the update sequence
{del(2), del(3)} and is then processed accordingly.

C. Constraint Checking

Due to its use of pre references, the AUC is tightly coupled
to the sequential table. It is therefore necessary to define the
sequence of atomic updates in a way that their application in
reverse document order leads to the desired result.

1) Tree-Aware Updates: There are certain scenarios of
the cache that interfere with the overall concept of efficient
distance adjustment. For example, if a node X is inserted
into an already deleted subtree rooted at B, the AUC is no
longer valid as it gives incorrect shift and accumulated shift
values. In general, this problem can be solved by so-called
tree-aware updates that use the information contained in the
AUC itself. Tree-aware updates check structural constraints by
traversing the AUC in document order. For each encountered
atomic delete, all updates that take place in the subtree of
the target node are removed. As the subtree is deleted, these
changes have no effect anyway. In our example, the AUC only
contains the delete operation rooted at B after applying these
steps and is again in a valid state. As the size of the AUC is
eventually reduced, we not only save I/O but also reduce the
complexity of the pre value mapping described earlier.

2) Order of Insert and Delete: Another setup of the AUC
that can lead to unwanted results is due to the application of
atomic updates in reverse document order. Consider the update
sequence ⟨del(p), ins(p, Y )⟩. If the insert is applied followed
by the delete, the inserted node Y would be deleted right
away. Again, such sequences can be identified by checking
constraints on the AUC during preprocessing and rewritten to
obtain the intended effect.

D. Processing of Efficient Bulk Updates

Having discussed the key aspects of our technique for
efficient structural bulk updates, we conclude this section by
giving an overview of how these steps are combined to form
the algorithm given below.

1) Fill AUC with a sequence of updates.
2) Check AUC constraints.
3) Perform tree-aware updates, shift accumulation, etc.
4) Apply updates with delayed distance adjustments.
5) Adjust distances directly.
6) Resolve text node adjacency.

Filling the AUC (Step 1) is straightforward. Note that tasks
such as constraint checking (Step 2) and cache preparation
(Step 3) can be carried out on the fly if the cache is filled in
document order. Value updates are performed before structural
updates to minimize recalculation of update locations. During
the processing of structural updates distance adjustments are
delayed (Step 4) and then adjusted directly (Step 5) as de-
scribed in Section III-A. Finally, the method for resolving text
node adjacency presented in Section III-B is applied (Step 6).

IV. RELATED OPTIMIZATIONS

We discuss two related optimizations, replace operations
and merging of atomic updates, which are enabled by the
caching of update operations. In order to illustrate the benefit
of these optimizations, it is helpful to provide some details on
how the Pre/Dist/Size encoding stores data physically.

A. Preliminaries

Recall from Section II that the sequential table is divided
into logical pages, rather than being stored in a contiguous file.
As shown in Figure 2, main memory directory keeps track of
the document by recording the location and sequence of pages,
the first pre value fpre on each page. Free space is only allowed
after all tuples on a page, hence no gaps between tuples or at
the start of a page. As mentioned before, the main purpose
of this setup is to reduce I/O costs if tuples are inserted or
deleted, as tuple shifts are restricted to the tuples on the same
page. An additional reason is that it allows for some basic
buffering mechanisms, where a page is completely loaded and
then altered in main memory before being flushed to disk.

In order to guarantee a fixed-length encoding of the differ-
ent node types, text and attribute values are only referenced
by an offset and not directly stored in the table. The actual
values reside in sequential files on disk. In case of frequent
updates, the structure of these files degenerates, as new entries
are only appended to the existing files and no overwriting takes
place. If values are frequently removed, added or re-inserted,
an increase in size and fragmentation is the consequence.

B. Replaces

Up to now, we exclusively talked about insert and delete
atomics. Being a combination of delete and insert, replaces
are arguably not an atomic type itself. Yet, implementation-
wise they help to realize a few important optimizations.
Performance results characterizing the performance benefit of
the described replace operations are given in Section VI.



a) Basic Replace: A basic replace operation r is carried
out as follows. First, the node at the update location is deleted,
which is consequently followed by a forward shift of all tuples
with a pre value greater or equal to this location. Then, the
replacing sequence is inserted at the updated location, which
leads to a backward shift of the following tuples.

b) Rapid and Lazy Replace: In addition to the naı̈ve
basic replace, two more advanced approaches have been real-
ized to limit fragmentation and I/O. The first approach, called
rapid replace, directly overwrites entries in the sequential
table. Following tuples and the according pages are then only
touched once, which not only saves a considerable amount
of I/O but also reduces fragmentation. The second approach,
referred to as lazy replace, tries to substitute the structural
replace operation with less costly value updates. This approach
pays off if the replaced and replacing subtrees generally share
the same structure. The lazy replace compares the node to
be deleted with the replacing insertion sequence. If they are
topologically identical, a sequence of value updates suffices.
The implementation is straightforward as it simply requires a
sequential and pair-wise comparison of the tuples in the source
and destination table. In case the lazy replace fails because of
structural differences, a rapid replace is applied instead.

C. Merging Atomic Updates

Reducing the number of structural atomics naturally re-
duces the complexity of bulk updates. However, there are also
benefits to merging atomic updates that are less obvious. For
example, there are more opportunities for the replace opti-
mizations described above if neighboring inserts and deletes
are merged. Similarly, merging neighboring inserts into one
operation can reduce I/O due to buffering strategies at the page
level. In general, two atomic updates o1 and o2 can be merged
if they fulfill certain conditions.

• Targeted locations of o1 and o2 are directly adjacent.

• o1 and o2 are performed under the same parent node.

• o1 and o2 adhere to the order constraints of the AUC.

Based on these conditions, the following substitution rules
to merge atomic updates have been defined. The two atomic
updates that are replaced are given in document order with
regards to the location.

1) ⟨ins(l,X), del(l)⟩ → rep(l,X): The substituting replace
is inserted into the AUC as follows. The first affected tuple is
the same as the one of the original delete, the shift value is
the sum of the shift values of the original updates, and the
accumulated shift value is the one of the original delete as it
already contains the correct value.

2) ⟨del(l), ins(l + 1, X)⟩ → rep(l,X): In this case, the
new first affected tuple value is taken from the original delete,
the shift values of the original updates are again summed up,
and the accumulated shift value is directly derived from the
original insert.

3) ⟨ins(l,X), ins(l, Y )⟩ → ins(l,XY ): The first affected
tuple of the new insert is the same as the one of the first insert,
the shift values can be summed up, and the new accumulated
shift value is the corresponding value of the second insert. XY
denotes the concatenation of X and Y .

4) ⟨rep(l,X), ins(l + 1, Y )⟩ → rep(l,XY ): The resulting
replace affects the same first tuple as the original replace, shifts
tuples by the sum of the shift value of the original replace and
insert operation, and has the same accumulated shift value as
the original insert.

5) ⟨ins(l,X), rep(l, Y )⟩ → rep(l,XY ): The value of the
original replace is used as the first affected tuple value of
the new replace, the shifts are summed up and the new
accumulated shifts correspond to those of the original replace.

Insertion sequences (Cases 3–5) must be merged with
regards to the desired document order. Between the end of the
first and the beginning of the second insertion sequence, there
is potential for text node adjacency which has to be resolved.
In Section III, we claimed that atomic updates can be merged
on the fly during cache preparation. This claim can now be
substantiated based on the transformation rules given above. As
can be seen, all information required for the merge is already
contained in the AUC.

V. IMPLEMENTING THE XQUERY UPDATE FACILITY

So far, we have discussed efficient bulk updates at the
implementation level as a series of atomic insert, delete, and
replace operations. However, at the interface level, data is
manipulated in terms of the primitives of the XQuery Update
Facility (XQUF) [4]. In this section, we present how these
primitives are implemented by atomic updates and the AUC.
As the AUC is motivated by the Pending Update List (PUL)
introduced by XQUF, this implementation is relatively straight-
forward. Nevertheless, one issue that needs to be addressed
is in which order the XQUF primitives have to be added
as atomic updates to the AUC to produce correct results.
This issue is due to the fact that the AUC imposes an order
constraint, whereas the order of the primitives in the PUL is
exchangeable.

A. XQUF Update Primitives

Table II lists the update primitives defined by XQUF
(§3.1)2 together with their ranks and update location. Similar to
the location field of an atomic update in the AUC, the location
of an XQUF primitive identifies the node targeted by the
update. For most update primitives, the location corresponds to
the pre value of the target node. However, for some primitives,
the location must be re-calculated as it is relative to the
target value. For an insert into as first statement, the given
insertion sequence is added directly after the attribute nodes
of the target. The number of attributes must consequently be
added to the target value to determine the appropriate location.
The last three primitives add insertion sequences directly at
the following position of the target node. The rank value is
assigned based on the type of the primitive. In the case that
multiple updates target the same node, the rank guarantees that
these updates are applied in a way that the result of a query is
always consistent with the XQUF specification. For example,
if an insert before and an insert after have the same target, the
insert after must be applied first due to the application order
of the AUC. For the last three primitives, the order implied by
the rank value is particularly important as they all access the
same location.

2Note that replace stands for both replace node and replace element content,
whereas put is not shown as it is outside the scope of this work.



primitive rank location
insert before 1 pre(n)
delete 2 pre(n)
replace 3 pre(n)
rename 4 pre(n)
replace value 5 pre(n)
insert attribute 6 pre(n)
insert into as first 7 pre(n) + attSize(n)
insert into 8 pre(n) + size(n)
insert into as last 9 pre(n) + size(n)
insert after 10 pre(n) + size(n)

TABLE II: Order of update primitives and calcu-
lation of location relative to target.
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insert node <X/> after /A/B
insert node <Y/> before /A/C

(b) Case 3

Fig. 10: Ordering of primitives

B. Ordering Update Primitives

Based on the rank and location of update primitives, they
can be ordered in a way that not only satisfies the constraints
of the AUC, but also yields the result specified by XQUF.
To determine the order of primitives, pair-wise comparison
is based on location, target, and rank. Unfortunately, it does
not suffice to simply base the comparison on target, location
or rank alone. First, the location of the two given update
primitives has to be determined, as this is the most important
property for ordering. Afterwards, there are four distinct cases
that take care of all possible combinations of primitives.

1) Primitives operate at different locations in the sequential
table: In this case, deciding on an order is simple. As the
AUC is filled in document order, the primitive with the greater
location value has to be applied first.

2) Primitives operate at the same location in the sequential
table and one of them operates within the subtree of the other:
Figure 10a gives an example of this case using two insert into
statements. Assume that primitive a inserts <X> into <B> and
primitive b inserts <Y> into <A>. Both primitives add the new
nodes at the same location, hence location(a) = location(b) =
3. For each insertion sequence, primitive b must be applied first
in order to end up under the appropriate parent. In the given
case, the update of primitive a takes place in the subtree of
target(b) as it meets the conditions location(b) > target(a)
and target(b) < target(a). Node Y has to end up after X and
is therefore inserted first, which is achieved by the ordering
⟨b, a⟩. The example evolves around statements of type insert
into, yet the same applies to the types insert into as last and
insert after.

3) Primitives operate at the same location in the sequential
table but on different target nodes: If the first two cases do
not define the ordering of the primitives, the target value can
be used, which is illustrated in Figure 10b. Primitive a inserts
<X> after <B> and b inserts <Y> before <C>. As target(b) >
target(a), the final ordering is given as ⟨a, b⟩

4) Primitives of different types operate on the same target
node: Finally, if all of the previous cases do not apply, the
ordering is determined based on the rank. For example, if two
primitives operate on the same target node with one of them
being a rename and the other one a delete, their ranks imply

that the delete has to be applied after the rename in order to
adhere to the XQUF specification.

Observe that the four cases outlined above define a compar-
ison function c(x, y) that has the following properties, where
sgn(x) is the signum function.

sgn(c(x, y)) = −sgn(c(y, x)) (1)
sgn(c(x, y)) = sgn(c(y, z)) = s ⇒ sgn(c(x, z)) = s (2)

∀z : c(x, y) = 0 ⇒ sgn(c(x, z)) = sgn(c(y, z)) (3)

The first property ensures that the comparison order does not
influence the resulting sort order of the primitives. The second
property, transitivity, is guaranteed by the hierarchical decision
process defined by Steps 1 to 4. The last property is only of
theoretical interest as there can never be a comparison between
two identical update primitives.

C. Correctness

To conclude this section, we sketch a proof of correctness
for our XQUF implementation. Recall that duplicate updates
(same target, same type) are prevented by the XQUF PUL.

An execution order is correct if every node is placed
at the right position in document order relative to all other
nodes. In our approach, the order of update primitives is
determined by a score that is based on the pre value of the
node and the rank of the primitive (cf. Table II). Since the
score is used to order primitive using the comparison function
c(x, y), inconsistencies and wrong placements can only arise
for primitives with the same score. We can distinguish the
following two cases.

• If there are no ancestor/descendant relationships be-
tween the target nodes, location/target/rank is always
unique. Since the pre value of the target is used
as a tie-breaker, there cannot be two non-identical
primitives that collide.

• The case of ancestor/descendant relationship has to be
handled explicitly, but pair-wise comparison of two
update primitives again suffices as only the relative
order matters. As a consequence, this case can also
be reduced to one of the four cases defined in the
previous section.



factor size nodes date elements people size
0.01 1 MB 3.3 · 104 1.0 · 103 5.2 · 103
0.10 11 MB 3.2 · 105 9.2 · 103 5.0 · 104
1.00 116 MB 3.2 · 106 9.0 · 104 5.1 · 105

10.00 1167 MB 3.2 · 107 9.0 · 105 5.1 · 106
100.00 11,670 MB 3.2 · 108 9.0 · 106 5.1 · 107

TABLE III: XMark benchmark documents statistics.

VI. EVALUATION

The XQuery Update Facility based on structural bulk
updates was implemented in the open-source native XML
database BaseX3. Based on this implementation, we evaluated
the proposed technique both in a quality improvement and in
a feasibility study. Threats to the validity of these studies are
discussed at the end of this section.

A. Experimental Setup

All measurements presented in this section are collected
using commodity hardware. Specifically, a 2010 Apple iMac
with an Intel Core i3 3.2 GHz 64-bit processor, 8 GB of
main memory and a 1 TB hard-disk drive is used. Standalone
versions of BaseX are run on OS X 10.8.4 using Oracle Java 7
(Update 12) with a 6 GB heap size (-Xmx6G).

The data sets used are generated by the XMark [16]
benchmark for XML data management. Scaling factors, sizes,
number of nodes in the table, number of date elements, and
the size of the people element subtree are shown in Table III.

B. Quality Improvement Study

Even though we use the XMark documents in our evalua-
tion, it was necessary to define our own queries as XQuery
Update is not yet covered by the test suite. Bulk delete
and insert as well as replace scenarios were run in a hot
database state. First, a fresh and thus defragmented database
was created for each query. Then, each combination of query
and document was tested several times, until no significant
change in processing time could be noted. The number of
executed runs for measurements depends on the size of the
document. For the smaller documents (1 MB, 11 MB) this
equals twenty runs, for the 116 MB document ten runs and
for the two biggest documents five and three runs. Although
the answering time for the two tested versions of BaseX varies
greatly, the number of runs remains the same to ensure equity.
The fastest recorded processing times are reported here. For
the 11.7 GB document the text and attribute indexes of BaseX
are deactivated to not exceed the memory limits. No options
are changed apart from this.

We use the <date> element as the target for bulk queries,
as it is distributed over the entire XMark document. The
element consists of an element node that contains a single
text node as a child. We compare the performance of Ba-
seX 7.3 (v73) and BaseX 7.7 (v77), since the latter implements
the technique presented in this paper. An overview of the
results is given in Table IV and in Figure 11a. Value updates
are not shown in the figure as we focus on the efficiency of
structural bulk updates.

3http://www.basex.org

Query 1 MB 11 MB 116 MB 1.1 GB 11.7 GB

Q1 8 ms 51 ms 0.52 s 8.6 s 1105 s
9 ms 60 ms 0.61 s 8.1 s 414 s

Q2 80 ms 7577 ms 810.58 s – –
10 ms 82 ms 0.96 s 22.4 s 1803 s

Q3 133 ms 9644 ms 1019.10 s – –
17 ms 143 ms 1.96 s 145.9 s 17735 s

TABLE IV: Bulk update processing times of v73 (top) and
v77 (bottom).

1) Value Updates: Although value updates are not affected
by the optimization presented in this paper, their performance
can be used to quantify the overhead, if any, introduced by our
technique. In order to do so, we run the following query (Q1)
on all five document instances.

for $d in //date/text() return
replace value of node $d with 99.99.9999

The comparison of processing times for v73 and v77 shown
in Table IV indicates that there is no significant overhead due
to efficient bulk updates. Throughout the documents 1 MB to
116 MB, the processing time scales almost linearly without
noticeable difference between v73 and v77. Between the
1.1 GB and 11.7 GB document the processing time for both
versions grows by a factor of 50 to 100. This super-linear
increase is due to the fact that the actual text values are
not directly stored in the Pre/Dist/Size table, but referenced
through an offset. Alternating between the location of the
currently accessed table block and the blocks of the file that
holds the text values causes additional I/O in this scenario.

2) Deletes: To measure the performance of deletes, we run
the following query (Q2) that deletes all <date> elements on
each of the five document instances.

delete node //date

The total processing times reported in Table IV and plotted in
Figure 11a clearly document the performance benefit of our
technique. We can observe a reduction of processing time by
at least an order of magnitude for all queries and document
sizes. For the 1 MB to 116 MB documents, the processing
time increases linearly with the document size for v77, whereas
for v73 it grows exponentially by a factor of 100. This trend
explains well why we aborted the tests for the two biggest
documents with v73, as they would have taken several days
to complete. At a rate of deleting around 1.8 · 106 nodes in
22.4 seconds and around 18 ·106 nodes in 30 minutes on these
two documents, respectively, v77 still performs adequately.
As seen with value bulk updates, we nevertheless observe a
super-linear increase for the largest document size. In order to
understand this effect, we break down the complete processing
time of Q2 into its major components shown in Figure 11b.

• Overall describes the complete processing time. The
overall value is always higher than the sum of the
other parts, as some factors, e.g., query parsing, are
not included.
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(b) Breakdown of delete processing time (ms)
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Fig. 11: Summary of the results of the quality improvement study

• Structurals accumulates the time for node deletion,
updating of size values and shifting successor tuples
on disk.

• Distances times distance adjustments, including the
calculation of the appropriate node set, calculation of
the new distances, and writing distances to disk. It also
includes the time for computing the pre value mapping
(see Mapping).

• Mapping accumulates time spent to map old pre values
to new ones and vice-versa. The mapping operation is
processed entirely in main memory.

• Adjacency captures the time spent for all text node
adjacency-related operations, which includes checks
and the actual resolution.

The processing times for Distances, Mapping, and Adjacency
all increase linearly with the document size and do therefore
not explain the overall deterioration. However, it can be
observed that the time spent on Structurals increases and,
towards the end, accounts for almost the complete processing
time. Having addressed expensive distance adjustments, the
new dominating factor in a structural bulk update is the actual
deletion of nodes on disk and shifting tuples. Rather than
being linked to the technique presented in this paper, this effect
is due to the logical paging mechanism of BaseX, described
in Section II. As BaseX simply leaves empty space at the
end of pages in which nodes were deleted, the database does
not shrink in size. Consequently, the probability of cache
misses increases and performance drops disproportionally.
Experiments have shown that, in the case of large databases,
doubling the page size as a means to reduce the overall number
of pages already pays off.

3) Inserts: The performance of inserts is measured using
the following query (Q3) that inserts a new <ndate> element
after every existing <date> element.

for $d in //date return
insert node <ndate>99.99.9999</ndate> after $d

The trend of the overall results reported in Table IV and plotted
in Figure 11a follows the results for delete bulk update in
Q2. Already for the smallest document size of 1 MB, v77
outperforms v73. Up to a document size of 116 MB, the
processing time increases linearly. In contrast to the previous
experiment, the performance deterioration for inserts already
occurs at the step to the 1.1 GB document. Nevertheless,
inserting about 1.8·106 nodes at approximately 9·105 locations

in less than two and a half minutes is impressive. To isolate
the reason for this performance drop, we again broke down
the query processing time of Q3 into the components shown
in Figure 11c. As observed with Q2, the insertion of nodes
is by far the most expensive part. While Mapping scales
well, all tasks that perform I/O operations become increasingly
expensive. Again, the cause for this performance deterioration
is not related to the technique presented in this paper, but due
to the logical paging of BaseX. Upon database creation, BaseX
fills logical pages to capacity to minimize the database size. If
new nodes are added, a new logical page has to be appended
after the sequence of all existing pages on disk and the page
directory keeps track of document order. This is detrimental
in two ways. First, a lot of partially filled pages are created,
as there is no redistribution of existing tuples between existing
pages. Second, the database is no longer contiguously stored on
disk, but logically inserted nodes in the middle of the document
are stored physically at the end of the table. These issues
greatly increase the number of I/O operations as the document
size grows. Adding a text node contributes in the same manner,
as the inserted text has to be added to the appropriate file.

4) Replaces: Finally, we evaluate the different optimiza-
tions for replace operations that have been introduced in
Section IV. Recall that the rapid replace aims at reducing
processing time, whereas the goal of the lazy is to avoid
fragmentation. To analyze these optimizations and to compare
them, we have measured their run-time performance in a
number of setups (including the worst-case) and in two distinct
scenarios.

Even: The replacing and the replaced tree have the
same size or node count. Therefore, successor tuples do not
have to be shifted. We use the following XQuery expression
for this comparison. The size of the people subtree for different
documents is given in Table III.

replace node //people with //people

Uneven: We replace the target node <people> with
the <europe> subtree, which is about half the size, using the
XQuery expression below. As the two trees do not feature the
same structure, lazy replace cannot be applied. Nevertheless,
the uneven comparison can quantify the benefits of the rapid
replace better.

replace node //people with //europe

In order to get comparable results, the individual replace
approaches are explicitly activated in the code. A modified



1 MB 11 MB 116 MB 1.1 GB 11.7 GB
basic 18 ms 144 ms 1630 ms 20.73 s 528.7 s
lazy 16 ms 133 ms 1496 ms 17.87 s 298.6 s
rapid 16 ms 141 ms 1601 ms 19.51 s 310.9 s
lazy/rapid 17 ms 155 ms 1724 ms 21.03 s 357.7 s
basic 17 ms 121 ms 1302 ms 14.62 s 267.9 s
rapid 13 ms 105 ms 1103 ms 11.87 s 169.9 s

TABLE V: Performance of different replace types in v77 for
the even (top) and uneven (bottom) scenario.
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Fig. 12: Relative comparison of different replace scenarios

version of v77 is tested that includes the lazy replace. Table V
summarizes the total processing times, whereas Figure 12
relates the different strategies to the basic replace.

Basic: The basic replace serves as the baseline for
the relative comparison in Figure 12. The target node is first
deleted, followed by the insertion of the replacing tree at the
same location. For the two biggest documents, we observe
a super-linear drop of performance. Nevertheless, replacing
around 5 · 107 nodes in under 10 minutes yields an impressive
rate of almost 100 node replaces per millisecond. The deteri-
oration of the performance for larger document sizes can be
explained following the same argument as for bulk inserts and
deletes.

Lazy: A lazy replace can only be applied if the two trees
are structurally equal. Traversing both trees completely for
comparison is therefore mandatory. The resulting processing
time consists of a linear traversal of the table, in addition to a
single value update afterwards, which is negligible. Although
the lazy approach is only marginally faster (about 10%) than
the basic replace for smaller documents, its benefit increases
with the document size, reaching about 43% for the 11.7 GB
document. Nevertheless, the reduced rate of fragmentation is
the major benefit of this approach.

Rapid: The results of the rapid replace are similar to
the results of the lazy replace. While the difference at the
beginning is even smaller (< 5%), it clearly outperforms the
naive approach on the 11.7 GB document with about 41%
performance gains. Due to the paging strategies, overwriting
the table in-place seems to pay off where performance sharply
deteriorates otherwise.

Lazy/Rapid: Comparing a failed lazy replace with the
basic approach is the most relevant setup. In order to do so, we
provoked the worst-case by making sure that the lazy replace
needs to sequentially scan the complete replaced tree, before

aborting due to structural differences with the replacing tree. At
that point, the rapid replace is used to perform the operation.
For document sizes from 11 MB to 1.1 GB, even the basic
replace shows better performance in this setup. However, the
difference between a basic replace and a failed lazy replace
stays well below 10% most of the time. In the case of the
11.7 GB document, the benefit of using a lazy replace, even
if it might fail, over a basic replace can be quantified as a
speedup of > 30%.

Uneven scenario: In the last scenario, the replacing
tree is only half the size of the replaced tree. For cases like
this, the lazy replace yields no overhead, since the initial
comparison of tree sizes immediately terminates the scan.
However, in this scenario further performance benefits of the
rapid replace can be observed. The reason is that the optimized
replace overwrites tuples in-place and thus avoids random I/O
access, whereas the basic approach first deletes some tuples
and afterwards re-inserts them at the physical end of the table.

C. Feasibility Study

The AUC presented in Section III is an additional data
structure that is introduced by our technique for efficient bulk
updates. The goal of this feasibility study is to investigate
whether these additional memory requirements are prohibitive.
For our study, we revisit the bulk insert and replace queries
described in the previous subsection. During the bulk insert
queries, up to 18 · 106 nodes are added to the database,
which are all cached in memory in addition to the AUC and
PUL data structures. Profiling the memory consumption of
the Java virtual machine revealed that the assigned 6 GB
were more than sufficient to execute all of the tested insert
and replace queries. Since, additionally, the size of memory
required by nodes from bulk insert and replace is much larger
than the additional data structures introduced by AUC, we
conclude that our approach is indeed feasible. The fact that
the implementation of our approach is part of recent productive
versions of BaseX further confirms its viability in practice.

D. Threats to Validity

The results presented in this section have been obtained
within BaseX, which is based on the Pre/Dist/Size XML
encoding. As a consequence, the validity of these results
is limited to systems that use a similar encoding based on
the pre/post plane with fixed-length records, e.g., the Pre/-
Size/Level encoding used in MonetDB/XQuery.

However, a number of native XML databases use encodings
that are based on dynamic labeling schemes, which will be
discussed in more detail in Section VII. For example, Sedna4

and eXist-db5 both use an internal representation that is based
on the Dewey encoding [9] and use B+ trees to index nodes
on disk. A performance comparison of the XQUF support
presented in this paper with these native XML database would
therefore be interesting and relevant. Unfortunately, neither
Sedna nor eXist-db offer XQUF support at this time. Addi-
tionally, these systems do not cache bulk updates and apply
each atomic update immediately. While this approach does not

4http://www.sedna.org
5http://exist-db.org



require any resources for caching, it might lead to undesired
side-effects with respect to the XQUF semantics.

VII. RELATED WORK

Updating XML is challenging as the structural order of
the document has to be observed when it is manipulated. In
order to address this problem, a number of XML encodings
have been proposed to map hierarchical documents to a flat
representation. Initially, the main focus of these encodings
has been to support efficient querying of the XPath axes. As
updating data in native XML databases gained importance,
the focus of research shifted. For example, O’Connor and
Roantree [12] surveyed existing encodings with respect to their
suitability for processing updates.

XML encodings can generally be classified into two fam-
ilies. First, prefix-based encodings [15] use variable-length
labels to denote the position of a node within an XML
document. Among others, notable proponents of this approach
are ORDPATH [13] and DeweyIDs [9]. As there is no need to
re-label existing nodes when the document is updated, these
encodings have a high updatability. However, as the length
of the label is not fixed, overhead is introduced elsewhere.
Accessing records on disk now requires an index and labels can
get very bulky for deep documents or in the case of frequent
insertions. Label compaction [1] methods have been proposed
to address the latter problem.

Region or interval-based encodings store records ordered
based on a tree traversal. The majority of approaches are based
on a pre-order traversal. The additional information that is
stored varies. To increase updatability, the Pre/Size [10] en-
coding uses “extended pre-order”, which leaves gaps for future
node insertions, and a size value that indicates the number
of descendant nodes. In the context of MonetDB/XQuery [3],
which is based on the Pre/Size/Level XML encoding, the use
of an additional Pos/Size/Level table [2] has been proposed
to process updates more efficiently. In the setting of the
Pre/Level/Parent, Noonan at al. [11] have proposed to address
updates by leveraging techniques used in relational databases
to rebuild indexes. Finally, Thonangi [18] proposes a concise
hybrid labeling scheme that attempts to unify the advantages
of prefix and region/interval-based encodings. Note that the
Pre/Dist/Size encoding is already more updatable than most
other interval or region-based schemes as it encodes the parent
of a node using a relative rather than a direct reference.

The benefit of exploiting bulk updates to optimize se-
quences of atomic updates has been demonstrated in the past,
see e.g., Srivastava and Ramamoorthy [17]. To the best of
our knowledge, however, the work presented in this paper is
the first proposal to leverage this technique in native XML
databases.

VIII. CONCLUSION

The semantics of XQUF and, in particular, the introduction
of the PUL have opened up new optimization possibilities for
updates in XML databases. In this paper, we proposed efficient
structural bulk updates as a technique that exploits these

opportunities in the setting of the Pre/Dist/Size XML encoding.
Specifically, we demonstrated how the cost of maintaining
the document order can be amortized by delaying distance
adjustments for a series of atomic updates. Our evaluation
of efficient structural bulk updates showed that this technique
reduces the processing time by orders of magnitude. Moreover,
large bulk updates that previously had prohibitive runtimes are
now feasible. Our technique has been implemented in the open-
source native XML database BaseX and is part of all releases
starting from Version 7.7.

REFERENCES

[1] R. Alkhatib and M. H. Scholl, “Compacting XML Structures Using a
Dynamic Labeling Scheme,” in Proc. British National Conference on
Databases (BNCOD), 2009, pp. 158–170.

[2] P. A. Boncz, J. Flokstra, T. Grust, M. van Keulen, S. Manegold, S. Mul-
lender, J. Rittinger, and J. Teubner, “MonetDB/XQuery – Consistent
and Efficient Updates on the Pre/Post Plane,” in Proc. Intl. Conf. on
Extending Database Technology (EDBT), 2006, pp. 1190–1193.

[3] P. A. Boncz, S. Manegold, and J. Rittinger, “Updating the Pre/Post Plane
in MonetDB/XQuery,” in Intl. Workshop on XQuery Implementation,
Experience, and Perspectives (XIME-P), 2005.

[4] D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Robie, and
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