Efficient Structural Bulk Updates on the Pre/Dist/Size XML Encoding

Lukas Kircher, Michael Grossniklaus, Christian Grun, and Marc H. Scholl

Department of Computer and Information Science
Database & Information Systems (DBIS) Group
University of Konstanz
P.O. Box 188, 78457 Konstanz, Germany
firsthame.lasthame@uni.kn

Motivation XQuery is a functional programming language. It is

developed with a strong focus on querying and manipulating XML data.
XQuery 1.0 became a W3C recommendation in 2007. The XQuery Update
Facility (XQUF) extension followed in 2011 and is widely adopted today:.

BaseX is an open-source, native XML database and XPath /XQuery 3.1
processor. Its internal XML representation is the interval-based Pre/Dist/Size
encoding schema. Very compact records of fixed length support efficient
evaluation of all XPath axes.

<A>
 pre dist size val
<C/><D/> 0 1 7 A o Pre:node position during pre-order
 | 1 3 B traversal
<E/> 2 1 1 C o Dist: # nodes between self and parent
<F> 3 2 1 D e Size: # nodes in subtree + 1
<G/> 4 4 1 E
</F> 5 5 2 F
 6 1 1 G

In contrast, prefix-based encodings have a high updatability. Dynamic labels
require little (no) re-labeling after inserts or deletes. Yet, accessing nodes on
disk requires a layer of indirection as records vary in length.

Global ORDPATH

PR

.*
.

......

Each encoding has its advantages and disadvantages. But have we really
reached the limits with Pre/Dist/Size with regards to updatability?

Pending Update List (PUL)

: C el hot
o ‘deep’ cache of XQUF atomic update primitives e

for $person in //person return

e memory-intensive insert node

<id_confirmed>no</id_confirmed>
into $person

o changes applied as last step of a transaction
o “update effects only accessible after the transaction”
e stages: 1. collect primitives 2. prepare application 3. apply updates

Pre/Dist/Size Up datability While value updates are cheap,

structural updates require re-labeling a potentially large amount of records.
Implicitly stored Pre values of successor records are shifted efficiently. Only
Size values of ancestor nodes are affected. However, a Dist value is updated if
a node is inserted or deleted between an existing node and its parent. The
costs depend on the update location and document structure.

Pre Dist Size Value
0 1 6 A .

1 1 2 B

N\

cn WD
R SN W =
=N R
G m m O

Bulk updates are especially expensive. Each structural update primitive
affects a set of Dist values. These sets are heavily intersected.

/ \ XMark111MB.xml
for $person in //person return |
insert node Site
<1id_confirmed>no</1id_confirmed> S
1nto $per'50n / peopl_e e
person0 personl perso>... person 25499
[B /1 ./ [
7 [.
[° [
Possible Solution =

o leverage Pending Update List to pre-compute final distance values
o adjust each Dist value only once

Universitat H—=
Konstanz
INNUANL
E T — N\CA‘

Efficient Structural Bulk Updates The Atomic Update Cache is an
efficient data structure that complements the PUL.

AUC

o collects all update information of a snapshot in document order
e points to affected table records and Dist values

o maps Pre values before/ after updates

o 15 applied in reverse document order

e —> enables us to delay and pre-calculate Dist updates

(-)
1. ins(2,Y) atomic first affected tuple shifts accum. shifts
0 1 2 g ;I;SIE(Q)’)X) 0 1 2 3 .del(()) 1 (O) —1 —1
@ © O O © ns(2,X) 2 (2) ! 0
DEL INS INS lnS(2,Y) 2 (3) 1]-
\ J
Bulk Update Stages

fill } | constraints } apply updates } adjust Dist } text adjacency

Filling the AUC is non-trivial. How to map XQUF primitives to atomic
updates without violating the document order? Each update primitive
operates on a target node and affects a specific table location. Two primitives
can be ordered by a four-step comparison:

[1. location]

Q P1: delete B

P2: insert X after C

B (O @ P2 > P1

[2. subtree]

e P1:insertYinto A

P2:insert Xinto B
0O ...
X

o derank |

[3. target j

rank
¥ Y before C 0 insert before P1: jnsert before B
II;%: ngg X I;]Stgrr% 1 delete P2:insert after B
2 replace
G @ “ e P1> P2 3 rename P2>P1

Results 2010 Apple iMac, Intel Core i3 3.2 GHz, 8 GB RAM,1 TB hard-

disk drive, BaseX 7.3, 7.7 (AUC), OS X 10.8.4, Oracle Java 7.12, -Xmx6G,
XMar k data . V7T deletes . V77 inserts V73 deletes . V73 inserts

1E+07

Q1 delete node //date

1E+05
Q2 for $d in [/date return I l
insert node <ndate>99</ndate> e E‘
after $d ol - B -—
1MB 11MB 116MB 1.1GB 11.7GB

adjacency . mapping . distances . structurals . overall

1E+07

Observations
o AUC improves performance by 1E+05 Qi

magnitude '
o much faster distance adjustment

1E+03
o still quadratic complexity for bigger | B0l ‘ i
documents | -‘

 insertion/deletion of records is the 1E-01
new bottleneck (structurals)

1E+07

N . 1E+05 Q,z
Keeping records in document
order is the new limiter 103

1E-01

1MB 11MB 116MB 1.1GB 11.7GB

Conclusion

o Efficient Structural Bulk Updates exploit the XQUF conditions

o little overhead is added in the form of the AUC

o the tree structure is efficiently restored after updates

o Pre/Dist/Size reduces advantage of prefix labelling schemas (bulk updates)
o Document order is the new limiter

mailto:firstname.lastname@uni.kn
mailto:firstname.lastname@uni.kn

