[T1
[
[

Universitat e
Konstanz

Efficient and failure-aware replication of an
XML database

Master thesis presented by

Dirk Kirsten
(01/775833)

Submitted to the Department of Computer and Information Science at the
University of Konstanz

1st Referee Prof. Dr. Marc Scholl
2nd Referee Prof. Dr. Marcel Waldvogel
Mentor Dr. Christian Griin

September 2014

ABSTRACT

ENGLISH

BaseX is a native XML database with a single point of failure. If the
database server fails, the data is unreachable. Therefore, we introduce the
concept of replication to BaseX to achieve high availability. We explore sev-
eral update management strategies and introduce an update management
suitable for the specific requirements of BaseX. As a primary is needed as
updating location within our replication architecture, we present several
leader election algorithms and show and implement a modified version
thereof to fit our requirements. To detect failures, a probabilistic accrual
failure detector is used, which is able to detect failures fast and reliably.
The thesis shows a favorable performance of the systems in terms of repli-
cation and transaction latency of the replication system. Hence, the used
replication system high availability with a minimal performance impact in
terms of transaction runtimes.

DEUTSCH

BaseX ist eine native XML Datenbank, welche momentan {iber einen Single
Point of Failure verfiigt. Wenn ein einzelner Datenbankserver ausfillt, sind
alle Daten nicht verfiigbar. Daher wird BaseX in dieser Arbeit derart erweit-
ert, indem wir das Konzept der Replikation einfiihren und somit Hochver-
fiigbarkeit erreichen. Wir prisentieren eine Ubersicht iiber diverse Update-
Management-Strategien und fiihren eine geeignete Strategie fiir BaseX ein,
um die angestrebten Designziele zu erreichen. Wir nutzen einen probabilis-
tischen, anwachsenden Fehlerdetektor um Fehler im Netzwerk oder fir
einzelne Datenbankinstanzen schnell und zuverldssig erkennen zu kénnen.
Da alle Updates in einer als Primary designierten Instanz durchgefiihrt wer-
den, betrachten wir verschiedene Leader-Election-Algorithmen und prasen-
tieren einen Algorithmus, welcher schnell und zuverléssig einen neuen Pri-
mary wahlt. Die Arbeit zeigt, dass das Replikationssystems in Bezug auf
Replikations- und Transaktionslatenz eine gute Leistung bietet und dass
somit die prasentierte Architektur eine hohe Verfiigbarkeit mit einem mini-
malem Leistungsdefizit kombiniert.

CONTENTS

1 INTRODUCTION 1
1.1 Motivation o 1
1.2 Contribution 2
1.3 Overview 3
2 REPLICATION 4
2.1 Preliminaries. o 4
21.1 DesignGoals 6
212 Consistency, 6
2.2 Update Management Strategies 8
2.2.1 Eager PrimaryCopy 11
2.2.2 Eager Update Anywhere 11
2.2.3 LazyPrimaryCopy. 12
2.2.4 Lazy Update Anywhere 13
23 ReplicasetinBaseX. 15
2.3.1 Architectureo o L 16
2.3.2 Clientconnection 20
2.3.3 Replication workflow 25
2.4 Failoverhandling 28
2.4.1 Failuredetector L. 29
2.4.2 Failover management 36
2.5 LeaderElection 38
2.5.1 Problem definition, 38
2.5.2 Bullyalgorithm 0. 40
2.5.3 Modified Bully algorithm 41

2.5.4 Modified Bully algorithm with unreliable delivery guar-
antees and limited eligibility 43
2.6 Related Work 50
3 PERFORMANCE 52
3.1 Testenvironment 52
3.2 Transactionlatency 53
3.3 Replicationlatency 55
3.4 Leader election performance 56
4 CONCLUSION 58
BIBLIOGRAPHY ii
LIST OF FIGURES v

LIST OF ALGORITHMS viii

INTRODUCTION

1.1 MOTIVATION

The number of problems that are not well-suited for relational database
technologies has been increasing in the last couple of years. While rela-
tional databases were almost exclusively the choice for an application ten
years ago, ever-increasing data volumes and altered application require-
ments have spawned a number of new database technologies. Terms such
as Big Data, NoSQL or semi-structured data are ubiquitous in the database
world and cater to a broad amount of solutions. While the terms do not
have much in common and are often not even properly defined, they of-
ten share one similarity: The need for a different storage concept from
the traditional relational algebra. This has led to an increased usage and
market share for non-relational database systems. All these non-relational
databases can be labeled as NoSQL databases, incorporating diverse con-
cepts like column stores, graph databases, key-value stores or document-
centric databases. Many of these concepts have in common that the strict
service terms of many relational database management systems (RDBMS),
being Atomicity, Consistency, Isolation and Durability (ACID), are relaxed
to less strict standards to achieve other design goals such as an increased
availability or high-performance.

NoSQL databases are beneficial for many use-cases in which a problem
cannot easily and efficiently be put into the strict structure of relational
systems. However, many RDBMS excel at aspects often labeled enterprise-
ready, with high levels of provided services. While there is a trend in re-
laxing ACID constraints and the business need for modeling data in a less
strict manner, the strong service level and strict guarantees of relational sys-
tems are important for many use cases. Relational database managements
systems have been present in the IT industry since the 70s and have been
extremely well researched and understood. To apply advanced technolo-
gies like failover management, workload distribution, security, scalability

1.2 CONTRIBUTION

and replication to non-relational database systems in an efficient manner
remains a major challenge.

BaseX' is such a non-relational database, being a high-performance and
flexible native XML database system and query processor. XML itself is
a W3C standard for document markup and is a data storage and data ex-
change format with a hierarchical structure.

With increasingly important service requirements with minimal service
outages came a number of challenges for native XML database systems,
which are already known in a relational context. Downtime of a database
system for an application can be very costly and as many applications are
run on commodity hardware, failure is not only a theoretical option, but in-
evitable. Replication, i.e. storing data multiple times on different locations
is an important feature for a database when used for high-available data.
It enables the database to be still available, although one or multiple data
storage locations experience failures. It is even more important, consider-
ing that by using BaseX as XQuery processor it cannot only be used as a
database, but as a whole technology stack including the application layer
logic, i.e. a potential outage would lead to a complete application down-
time.

Hence, it is not enough anymore for a database system to support an ex-
cellent read /write performance. Users expect a number of features within
a full-fledged database system and by including more and more enterprise-
level features within the database, BaseX can greatly expand the number of
potential use cases.

1.2 CONTRIBUTION

In this thesis we will introduce the concept of replication to BaseX. Multiple
instances of BaseX can be joined together to form a replica set and thereby
provide replication services. We denote BaseX instances within a replica
set as members. At any point in time at most one member of a replica set
serves as a primary with all the remaining members being Secondaries. The
primary will be automatically selected from the replica set and is the only
member than can accept updating queries. The primary is also responsi-
ble for coordinating the replica set and allowing new members to join or
existing members to leave the set. In case of a failure, a new primary will
be automatically elected and serve as the new coordinator to achieve high
availability and enable an automatic failover mechanism. We will detect

1 http://www.basex.org, A light-weight and high-performance XML database engine and XPath/X-
Query 3.0 processor

http://www.basex.org

1.3 OVERVIEW

failures by sampling heartbeats and predict a failure using an accrual fail-
ure detector.

The replication set not only increases availability, but also allows to dis-
tribute read-only queries to all members within the replicate set and thus
load-balance the query workload to several members. Based on the read-
/write ratio this can lead to a severe performance increase.

While the thesis is strongly coupled with the implementation for BaseX,
there are also several general contributions. We develop a new election algo-
rithm for systems with unreliable communication channels and with only
a subset of the members being eligible. Also, the implementation for Ba-
seX holds several lessons for other database systems, especially document-
centric ones.

1.3 OVERVIEW

This thesis is organized as follows: Within Chapter 2 we will introduce the
concept of replication in detail and the different aspects of it in a database
context. After discussion of the existing research in Section 2.2 we will
present the novel design and architecture of the replication system within
BaseX in Section 2.3. To achieve high availability, we must be able to de-
tect failures and react on them, what we will discuss in Section 2.4. In
Section 2.5 we will investigate an algorithm for automatic leader election
to determine a writable location within the replica set. Therefore, a review
of existing leader algorithms is presented and a modified approach for our
specific requirements is shown. In Chapter 3 we benchmark the proposed
replication system and show that the system behaves well for the design
goals we aimed for. Based on the presented arguments and performance
we will draw a conclusion in Chapter 4.

REPLICATION

2.1 PRELIMINARIES

Replication in a database context is the creation and maintenance of mul-
tiple copies of a data item, whereby a data item is simply a single piece
of information. Using replication, each data item is stored not just as one
physical data item, but stored on multiple locations as several data items. As
these data items should be consistent, they form one logical data item, i.e. the
user is unable to distinguish which physical data item he accesses. Ideally,
it should appear to the user of the database system as if only a single copy
of one particular data item exists. Hence, the user should just interact with
the logical data item, without the need to know internal details about the
physical storage location of data items. It is therefore the primary responsi-
bility of a replication mechanism to map operations on a logical data item
to all physical data items of this data item.

Replication can enhance a database system in various ways and can have
multiple design goals. The most important design goals in practice today
are high availability, strong fault tolerance and increased performance and
a combination thereof.

Increasing availability Awailability is the proportion of time for which a
service responds within a reasonable time frame. High availability is there-
fore a required goal for many applications to cater to their users, whereby
the level of availability which is required and must be guaranteed by the
database system highly depends on the use case. Whereas even a short
downtime in many industries cannot be tolerated’, others might tolerate

The survey "Understanding the Cost of Data Center Downtime" by Emerson Network Power
(found at http://www.emersonnetworkpower-partner.com/ArticleDocuments/SL-24661.
pdf .aspx) shows that the cost of a 9o minute downtime for companies such as banks,
telecommunications companies, internet service providers or cloud/co-location facilitates
amounts to an average of $505,000

http://www.emersonnetworkpower-partner.com/ArticleDocuments/SL-24661.pdf.aspx
http://www.emersonnetworkpower-partner.com/ArticleDocuments/SL-24661.pdf.aspx

2.1 PRELIMINARIES

a longer period of outtakes and still consider it a highly available system.
Server failures and network partitions are the two most relevant factors in
a degrading availability. Without replication the outage of a single server
will lead to the complete unavailability of a database system. If instead a
data item is stored in up to n locations, the availability is dramatically in-
creased, because only one location has to be available to serve the requested
data item. If we consider the probability p of a server failure, the expected
availability of an object stored in such a replicated system is 1 — p”, i.e. the
probability of a failure increases significantly with an increasing number of
storage locations.

A special case of high availability is the presence of mobile replicas. With
the increased usage of mobile devices like smartphones and tablets with
limited network connectivity comes a number of new challenges. Whereas
in a traditional server settings we do expect occasional failures, the connec-
tivity for mobile replicas is very limited to begin with. However, it would
still be beneficial to have some kind of synchronization, as it could allow
to automatically replicate changes made at a mobile device during network
unavailability to the main servers and vice versa.

Fault tolerance The availability of data is a first requirement to deliver
a correct result to the client. However, this available data can still be not
correct, especially it can be out of date. Strict consistency is often dropped
to less strict consistency criteria for performance reasons, opening the pos-
sibility that a client could read stale data. When an update is marked as
complete to the user before it is committed on all storage locations there
can be different versions of a data object stored on the distinct storage lo-
cations. A fault-tolerant service will always, despite a certain number and
type of failures, return the correct and most up-to-date information back to
the client. If there are 21 + 1 servers in the cluster and up to n servers mis-
behave, the replica set can still be fault-tolerant as the majority of servers
are still behaving correctly and can outvote the misbehaving minority of
servers.

Improving performance Data-bound operations are often limited by I/O
performance. If the same data is present at not only one server, but instead
at n servers, the read capacity can theoretically be increased by factor n.
However, the server has to make sure it returns the most recent state of
a data item. Many replication systems relax this condition to increase the
performance of a system and not always return the most up-to-date date
item. One example of increasing performance by replicating data is caching,
e.g., when using DNS to lookup an internet address and to determine the

2.1 PRELIMINARIES

IP address. As this is fairly static data it can be cached by the browser and
by a re-run of the same address the cached date can be instantly accessed.
Many database replication systems perform read operations on all storage
locations within the systems to fairly distribute the workload and increase
throughput.

2.1.1 Design Goals

XQuery is often compared to SQL, as both are query languages. This is
true in respect to XQuery being the primary and natural query language
for XML data, just as SQL is the primary query language for relational
data. However, XQuery is even more powerful by providing a full-fledged
functional programming language?, with the latest specification of XQuery
3.0 providing advanced concepts such as native function items and higher
order functions. Therefore, XQuery can be used not just as querying lan-
guage, but also as full application programming stack. With the introduc-
tion of RESTXQ in [Ret12] and the support for it within BaseX, it can even
serve as a full server-side web application stack.

2.1.2 Consistency

Consistency in a database context is the guarantee that any transaction sees
the effect of other transactions committed in the past and guarantees that
no database constraints are violated. The database will always transition
from one valid state to another valid state.

We will now define a consistency model for the further discussion of
replication strategies. This is especially important, as consistency is a broad
term and it is important for the user to know which level of consistency to
expect without bothering with internal protocol implementation details.

Transaction Consistency

For a data item x we can use two distinct operations to operate on x: read(x)
and write(x). A transaction T is a partial order of such read and write oper-
ations. Two operations OiT" (x) and O]T’ (x), being a member of transactions
Ti and Tr, respectively, accessing the same data item are defined as conflict-
ing operations iff one of them is a write operation. It follows that two read

Although SQL is turing complete, it is mainly a declarative querying language and in prac-
tice not used for programming application logic.

2.1 PRELIMINARIES

operations can never be in conflict with each other. Transactions containing
such a conflicting operation are by extension also conflicting transactions.

A history H is defined as the partial order of execution over a set of
transactions T = {T1, Ty, ..., T, } and thereby specifies an interleaved order
of operation execution [OV11].

Definition 2.1. A complete history H% is a partial order {¥1, <y} with the fol-
lowing properties:

1. X7 = U?:lz,-.
2. <2 UL <7,

3. VOiT"(x), O]-T’ (x) € X7 with OiTk(x) and O]-Tl (x) being conflicting operations
in distinct transactions Ty and T; there exists an ordering relation such that
either OZ.T"(x) Oy O].Tl (x) or O]T’ (x) Dy Ol.Tk(x).

This basically defines that a complete history has a domain which is the
union of the domains of all of its transactions and that the ordering relation
of the history is a subset of the ordering relations of all transactions.

A history is serial if for each pair T;, T; € T either all operations of T;
execute before T; or all operations of T; execute before T;. It immediately
follows that a serial history maintains consistency, as separate transactions
are applied in an serial manner and each individual transaction provides
atomicity.

Two histories H; = {X1,<pn, },H2» = {Z1,<n,}, i.e. defined over the
same set of transactions T, are conflict equivalent if for each pair of conflicting
operations O;, O; for all O; <y, O; also O; <y, O; and for all O; <y, O; also
O, <H, O] holds.

Definition 2.2. A history is serializable (SR) if it is conflict equivalent to a serial
history.

Definition 2.2 is the main criteria to guarantee transaction consistency. A
database provides strict consistency if the transaction execution history is
serializable.

A weaker serialization guarantee is provided by snapshot isolation, intro-
duced by Berenson et al. [BBG+95]. It has gained significant traction within
the research community and with commercial database vendors. Hereby
read operations are never blocked, but might read stale data from a previ-
ous snapshot of the database. This clearly violates the serializability con-
straint, but increases performance characteristics.

BaseX uses a strict two-phase locking (2PL) protocol to ensure strict con-
sistency. 2PL as introduced by Bernstein et al. [BSW79] requires that no

2.2 UPDATE MANAGEMENT STRATEGIES

transaction is allowed to request a lock after it released any of its locks. This
basically divides the protocol in two phases; a growing phase in which all
locks are obtained, followed by a shrinking phase in which the locks are
released. A simple locking graph is shown at Figure 2.1.

The discussion until now was just fo-
cused on non-replicated systems. By intro-
ducing replication and the existence of mul-
tiple storage locations and local histories growing phase
the serializability correctness criteria has to
be enhanced [BG83].

number of locks

Definition 2.3. A replicated system is one-
copy serializable (1SR) if the execution history
is conflict equivalent to a serial history over
non-replicated data items. o

1SR is the main criteria for strong trans- gigyre 2.1: Two-phase locking
actional consistency when using a repli- graph.
cated DBMS. Hence, we refer to a replica-
tion algorithm to confirm to strict transac-
tional consistency if it is 1SR.

Similar to strict consistency, snapshot isolation can also be enhanced to be
used in a replicated context [LKPJos]. Relaxed concurrency serializability (RC
serializability) is the enhanced concept for an even weaker transactional
consistency in a replication context [BFG+o06].

Mutual Consistency

While transactional consistency requires that the global execution history is
serializable, mutual consistency requires replicas to converge to the same
value for a data item.

We distinguish two classes of mutual consistency: Strong and weak mu-
tual consistency. Using strong mutual consistency it is required that all
replicas hold the same value for a data item after an updating transaction.
This is mainly achieved by using a distributed 2PL protocol, thereby up-
dates are propagated and committed to all affected replicas before commit-
ting the transaction as a whole.

2.2 UPDATE MANAGEMENT STRATEGIES

The main characteristic of a replication system is how updates are handled.
Gray et al. introduced in [GHOSg6] how replication protocols can be clas-

2.2 UPDATE MANAGEMENT STRATEGIES

sified by two orthogonal criteria: The time when an update is replicated to
other nodes and thereby affecting the one-copy serializability of a system,
mainly divided into lazy and eager execution and the location of an updated,
either at any node being update anywhere or only at the node holding the
respective data item, being primary copy. primary copy can either be that
one single master is responsible for all data items or each data item has one
distinct master, i.e. there are multiple updating replicas in the network.

EAGER PROPAGATION Using eager repli-
cation updates are applied to all replicas
of an object with the context of a transac-
tion and before committing the transaction <
itself. Hence, after a commit all replicas Coger Primary
hold the same value for the update data Laay Primary
item. Typically Two-Phase Commit (2PC)
is used for proper locking, although other
approaches are also possible. 2PC provides Sager Updote
strict consistency, but suffers from a com- Everywhere Loz Update
paratively slow performance. In the con-
text of BaseX, Erat showed in his bachelor v
thesis in [Era13] that this holds true also
for BaseX as 2PC is the currently used local
locking protocol. This effect is even worse . o

)]] . compared to their replication up-
when locking is done in a network envi- ... | . tions and propagation
ronment with the increased response times grategies.
within a network.

There are three main benefits of eager protocols. First, they typically
provide mutual consistency by enforcing SR1 and thereby avoid transaction
inconsistencies. Secondly, read operations can be applied on all nodes in
the network and it is enforced that only the most up-to-date value of a data
item is read. Finally, updates to replicas are applied atomically. Hence,
when after recovering from a failure the still provide full ACID capabilities.

The main disadvantage is that all nodes have to locally commit an up-
date before it can be committed to the user. Therefore the response time
of a transaction is limited by the slowest replica in the system as it has to
wait for all replicas before returning. This also entails that if one replica is
unavailable, updating transitions cannot terminate. For this reason, the scal-
ability for eager protocols is rather limited. As Gray showed in [GHOS96] a
ten-fold increase in nodes results in a thousand fold increase in deadlocks
or reconciliations.

update propagation

v

update location

Figure 2.2: Several databases

2.2 UPDATE MANAGEMENT STRATEGIES

LAZY PROPAGATION Lazy update propagation protocols differ from ea-
ger protocols mainly in the aspect that lazy protocols commit before the
updates are propagated to all replicas. Whereas eager protocols wait for
replicas to update their local data item, lazy protocols do not wait for this
commit and instead immediately commit after a transaction was committed
at the replica where the transaction is executed.

This has the main advantage that the response time is lower for lazy pro-
tocols. It also improves the scalability as replicas are much looser coupled.
However, this performance increase comes at the price of the loss of strict
consistency. The values of data items at separate replicas can be mutually
inconsistent and data items can be out of date if the update propagation is
not already applied at all replicas. Hence, a local read operation can read
stale data or a transaction may not see its own updates, an effect known as
transaction inversion.

PRIMARY COPY LOCATION In a primary copy update strategy, an updat-
ing operation has to be executed at the master site of the data item to be
updated. Each data item is assigned to one location and this replica serves
as master copy for this data item, all other replicas being slave sites. A special
case of a primary copy is a single master replication strategy as it restricts
all data items to have the same master copy replica, i.e. all updates are
executed at one single location.

The advantage of primary copy algorithms is mainly that update strate-
gies are easy since they only happen at one location. Thus, the need for
additional network communication costs and overhead is reduced as there
is no need for synchronization between different replicas. One location will
always have the most up-to-date value for a data item. The disadvantage of
the centralized approach is that the specific centralized nodes present a nat-
ural bottlenecks. If only one single location is responsible for a data item,
heavy load on this location can impact performance significantly. Also, the
presence of a failure is increased, as it also presents a possible single point
of failure.

UPDATE ANYWHERE LOCATION Update anywhere location strategies al-
low an updating operation to be applied at the replica location where the
transaction was executed. The local updating operation will then be propa-
gated to all other replicas within the network.

Performance will increase as write operations can be more evenly dis-
tributed across all replicas. However, a data item can be updated at separate
locations concurrently. Depending on the propagation strategy this might
be solvable by a distributed concurrency control algorithm and still provide

10

2.2 UPDATE MANAGEMENT STRATEGIES

1SR, but in other cases it will lead the database system to be non-1SR for
the global history.

2.2.1 Eager Primary Copy

In a single master eager protocol one replica is responsible for all update
operations. A transaction with at least one updating operation Write(x),
x being a replicated data item, is directly executed at the single master as
shown in the example in Figure 2.3a. Both reads and write on the master
are serialized using the Transaction manager of the replica, in most cases
using 2PC to provide strict consistency. The master applies a Write on its
local copy of the data item and propagates the update to all other replicas.
Write operations have to be transmitted at the slave replicas in the same
order as on the master, e.g., by using timestamps or logical clocks. After all
slave replicas replied back to the master that the commit was successful, the
updating transaction returns as committed to the user. Read operations can
be executed at any replica, as they all hold the most up-to-date value for
each data item. However, the executing replica has to require a read lock at
the master replica using a centralized concurrency control algorithm. The
read can then be executed at the respective replica and after that the master
can be notified to release the read lock. An example replication workflow
is shown in Figure 2.3a.

This approach has the main drawbacks that the response time depends
on the slowest replica in the network and that the single master has to
execute all updating operations, possibly resulting in a bottleneck.

One can relax the requirement to store all up-to-date values at a single
master. Instead, each data items is associated to one replica which is re-
sponsible for all updating operations on this particular data item. As there
are now multiple updating replicas available, the write load can be better
distributed. Unfortunately, it is more complicated to provide a global seri-
alization order. One possible solution is a primary copy two-phase locking
(PC2PL) protocol, whereby the lock manager is distributed over all replicas
and each lock manager is responsible for locking the specific data items on
the respective replica.

2.2.2 Eager Update Anywhere
An eager update anywhere replica control algorithm employs the possi-

bility of executing updates on any replica. Before committing the value,
the operation is propagated to all other replicas and commit them on their

11

2.2 UPDATE MANAGEMENT STRATEGIES

respective local copy. Each replica is responsible for monitoring all trans-
actions executed at that replica. When the other replicas have all notified
the master of their successful update operation, the transaction commits to
the user. The difficulty in this approach is the possibility of multiple updat-
ing operations on different replicas at the same time. Updating the same
data item at two independent sites could lead to inconsistencies. Hence,
a distributed concurrency control algorithm has to be used to serialize the
execution order of all updating transactions.

As in other eager approaches, read operations can again be safely issued
at any replica, as each data item will have the most up-to-date value.

An advantage of this approach is that a client does not have to care to
which replica it should send a query. As read and writes can be executed
at any replica it can simply be sent to any replica. Hence, transactions
can be load balanced to any replica. A disadvantage is the communication
overhead of a distributed concurrency control algorithm.

2.2.3 Lazy Primary Copy

Within a lazy primary copy replication strategy an updating operation is
applied and executed at the master copy and propagates the change to the
slave sites as shown in Figure 2.3b. The main difference to eager primary
copy algorithms is that in this case, the propagation takes place after the
commit has already been finalized on the master copy and the transaction
has successfully committed. As a consequence, read operations on data
items located at slave sites could read stale data, if a propagation from
a master copy could still be pending when the read operation is already
executing. One resulting consistency anomaly can be transaction inversion
in which a user might not see its preceding write operation when reading
data.

The execution order of all updating operations should be one-copy serial-
izable on all replicas. Using a single master this is quite straightforward as
a simple timestamp allows for the correct ordering. However, if the master
copies are located at different replicas, this becomes more complex. One
replica can receive propagated updated data items from multiple locations
and determining an equal order on all replicas is complex.

One possible approach is to use vector clocks or some other mechanism
guaranteeing total order of operations instead of timestamps. If transac-
tions arrive out of order, the normal solution in a local database system
would be to abort the transaction. However, in a lazy protocol the transac-
tion already terminated and an abort is therefore no longer possible. There-

12

2.2 UPDATE MANAGEMENT STRATEGIES

fore, an algorithm for update reconciliations to compensate and converge
to a consistent state is required.

Write operations will always be applied to the master copy replica loca-
tion, whereas the location of read depends on the concrete algorithm. If the
consistency is related and outdated data can be returned, read operations
can be executed at any location. If not, a read operation should be executed
by the master copy replica or a replica which is guaranteed to have the most
up-to-date value for the required data item.

The main advantage is the low response time compared with eager pro-
tocols. As a transaction does not have to wait for a slave site to commit
as well, the included network latency and response time to not effect the
commit of the transaction itself. The main disadvantage is the less strict
consistency guaranteed by the algorithm. Depending on the application
it might be unacceptable to read outdated data. Many systems require a
certain freshness of the data, e.g., in terms of time or number of updates a
data item is allowed to be outdated to be still considered fresh.

2.2.4 Lazy Update Anywhere

Lazy update anywhere replication algorithms use a less strict version of
consistency. Updates occur on all replicas and are propagated to the non-
executing replicas after the transaction was already committed at the local
copy of a data item. Read and write operations are both executed at a local
replica and are later on propagated to all replicas. Complication arises
when the propagated updates are processed at the receiving replica. The
order of the transaction and hence the serialization cannot be guaranteed
as the same data item could have been concurrently updated at different
replicas. These conflicting updates have to be reconciled and the result will
be incorporated into the order of the transaction execution.

However, the reconciliation is a non-trivial part and is based on heuristics
(e.g., timestamps or the priority order of replicas) and heavily dependent on
application requirements. However, some updates will be lost, depending
on the concrete algorithm.

An example workflow of a write transaction using a lazy update any-
where scheme is shown in Figure 2.3d.

13

2.2 UPDATE MANAGEMENT STRATEGIES

write(x) L) Master
e Copy 2
(3)}'
L__ | Slgve
| Site
|
|
@] Sslfave
readx) ————_——_ > ite

(a) Eager primary copy replication ac-
tions. (1) An updating operation is ap-
plied at the master copy location. (2)
The write is propagated to all slave
sites. (3) Each slave commits the write
locally and after all sites have commit-
ted the transaction is committed. (4) A
read operation can be executed at any
replica.

write(x) —@® . Master
| copy @)
(2)1|'
L___ Slave
| Site
|
@ !_ | Slave
read(x) £ — — — — — — | Site

(¢) Lazy primary copy replication
replication actions. (1) An updat-
ing operation is applied at the master
copy location. (2) The replica applies
the update locally and commits the
transaction. (3) The update is propa-
gated to all slave sites, where it is lo-
cally applied. (4) A read operation can
be executed at any replica, but may
read stale data.

1
vrite, (x) —>() Master

Copy

(3)

Slave
Site

Slave
Site

write, (x) 7T

(b) Eager update anywhere replica-
tion actions. (1) A data item is up-
date by two separate updating trans-
actions. (2) Both executing replicas
propagate the update to each replica
in the network and use a distributed
concurrency control algorithm to es-
tablish a consistent serialization his-
tory. (3) Each transaction become com-
mitted after each site committed the
update locally.

1
write, (x) —® | Master
@ Copy

Slave
Site

Slave
Site

write,(x) 7

(2)

(d) Lazy update anywhere replication
actions. (1) A data item is update
by two separate updating transactions.
(2) The update is locally applied at
each respective replica and committed.
(3) Both executing replicas propagate
the update to each other replica in the
network.

Figure 2.3: Four distinct categories of update management strategies for a replica-
tion system, differentiated by the update location and the update propagation.

14

2.3 REPLICA SET IN BASEX

2.3 REPLICA SET IN BASEX

In [Breoo] Brewer introduced the CAP theorem, establishing that a distributed
system cannot provide consistency, availability and partition tolerance at
the same time. In [Bre12] it was clarified that the properties are continuous
and not binary. As we already have shown, there are many different levels
of consistency providing miscellaneous guarantees. Also, it is quite clear
that availability can range from 0% to 100%.

When designing a replication architecture for BaseX we especially aimed
for the following design goals:

¢ As BaseX is not solely a database but can also serve as an application
layer, high availability is highly important. Uptime requirements are
critical for many applications and single points of failure are often not
tolerable. Although BaseX does have a backup/restore functionality,
at the time of writing there was no real reliable solution. Especially
for web applications using RESTXQ it is often desirable to eliminate
single points of failure and to harden failure tolerance. Therefore, this
is our most important design goal.

* As BaseX is optimized for performance in many ways such as query
processing as shown by Griin [Grii1o] or for updating as shown by
Kircher [Kir13]. Therefore, introducing replication should bring a
minimal overhead for updating operations and present a primary de-
sign goal. It is also of importance to increase the performance in
terms of throughput for read operations so large-scale deployments
are easily achievable.

* Replication should be transparent to the user, i.e. the user should not
be able to notice a difference between communicating with a single
server or a replica set of BaseX instances.

¢ We want to design our replication system in an extendable way, such
that further improvements are easily possible. The architecture should
allow to include new replication algorithms. It should also allow to
extend replication to a true distributed system where workload is dis-
tributed to a set of BaseX instances.

Building a replication system for BaseX involves communication through
a network. Reliable, high-performance and correct network communication
to distribute tasks within a network and avoid race conditions, deadlocks
and livelocks is a non-trivial task and as we have only a limited amount

15

2.3 REPLICA SET IN BASEX

of time and resources, we decided to use a framework to ease the imple-
mentation difficulties instead of implementing everything from the ground
up.

As BaseX is written in Java, the framework must be able to run on the Java
Virtual Machine (JVM). We decided to use Akka3, an actor-based frame-
work to build highly concurrent, distributed and fault tolerant applications.
Actors are objects encapsulating a state and behavior. Actors can communi-
cate to each other exclusively by using immutable messages. This is benefi-
cial, as it avoids locking objects and the accompanying locking and possible
race conditions. Actors form a hierarchy, each actor has a supervisor which
can react to an unexpected behavior or a failure of the actor and take ap-
propriate actions. Also, as actors communicate via messages, it provides an
abstraction layer in which the underlying implementation is not relevant for
the message transmission, i.e. it does not matter from an implementation
perspective whether two actors run in the same JVM or on different JVMs
on different machines, as akka will take care of the communication channel.
However, it is important to know that akka does provide a strict delivery
guarantee. Instead, a message is guaranteed to be at-most-once delivered,
i.e. if this message is dropped, the message is not delivered at all without
further actions. It is guaranteed that messages are delivered in-order per
sender /receiver pair of actors.

Another characteristic of akka is that it is event-driven and non-blocking.
Therefore akka is able to highly utilize the hardware without having to wait
for blocking operations.

2.3.1 Architecture

A replica set in BaseX is a group of at least two members. In each replica
set exactly one member will act as a primary, all other instances will act as
a secondary. A primary is automatically elected from the set of members.
The election process will be discussed in detail in Section 2.5. All update
operations are performed solely by the primary. The primary will then
propagate all changes to the secondaries, which will then asynchronously
apply the operations.

Distributors are the only instances which are able to connect to members
of the set and are themselves part of the replica set. This allows load bal-
ancing queries and handles member failures in a transparent manner to

http://akka.io, Akka is an open source Apache 2 licensed application developed by Type-
safe Inc. It should be possible to develop a BSD-licensed application such as BaseX using a
Apache 2 licensed library, although the legal aspects and ramifications are out of scope for
this thesis

16

http://akka.io

2.3 REPLICA SET IN BASEX

I A e e e e e e e e e e e S e e e e e e e s 1

|Replica Set 1

| |

1 I

| |

1 |

Client ! . |
ten i Prlm;ry !

1 M I

: — / ember :

. 1 | Distributor .]
Client ; J !
| \ > |

) \ 1

Client | < Al :
i Secondary Secondary 1

i Member Member 1

| |

Client ! |
| |

| |

Figure 2.4: Replica set architecture with three members. There is one primary
within a replica set with all other members being Secondaries. All members are
connected through heartbeats. A distributor is always connected to a primary and
if needed by a client connection can also send queries to Secondaries. All clients
connect through a distributor with the replica set.

the user. Clients can connect to a distributor. Each connection can specify
several parameters about how a query should be handled, e.g., whether
it should be just sent to the primary or if it could also be executed at a
secondary.

An architectural overview for a replica set with three members is given
in Figure 2.4. Note that also multiple distributors could be present. As a
distributor is a light-weight construct and should fail very rarely, this might
often be not necessary, as a failing distributor would require the client to
manually connect to another distributor instance.

Member state machine

A replica set member works as a finite state machine with well-defined
transitions and states as shown in Figure 2.5. A member always starts in
the Unconnected state. When the member is started with the intention to
span a new replica set, it will transition to the primary state to listen for
incoming new members. As a requirement for a replica set to be writable is
to have at least two members, the replica set will remain in read-only mode.
If the member is commanded to connect to an existing replica set, it will
transition to the StartUp state. During start up, the new member handles
the initial connection establishment and joins the replica set as described in
more detail in the next chapter.

Depending on the state of the replica set, the member could transition
directly to being a secondary, if there is a primary present and the set is

17

2.3 REPLICA SET IN BASEX

Unconnected

_____ Failure

— =
)/V Down

|

|

|

Election

Figure 2.5: Member states with all possible transitions. The direction of an arrow
indicates whether a transition in this direction is possible. The black continuous
line indicate a normal transition. The red dashed lines represent a failure transition.
The black dotted line is a failure recovery.

writable. If any of these conditions are not met, all members in the set will
go into the Election state and elect a new primary. Thus, one member in the
cluster will transition to the primary state, whereas all other members will
become Secondaries.

When the replica set is gracefully shut down or a member decides to
leave the replica set it will go into the Down state.

In any of these states except the unconnected and down states, whereby
a member is already disconnected, a member can go into a Failure state if
an unrecoverable error occurred.

Connection handling

During start-up of a new member it is set by the user whether a new replica
set should be created or the member should connect to a new replica set.
If the member should join an existing replica set, this connection has to be
established.

First, the akka subsystem is started. As Akka guarantees only at-most-
once delivery guarantees for messages sent we use an enhanced message
channel with acknowledgments and retransmissions. This ensures that a
message is actually delivered from one member to another. Using a reli-
able channel we establish a connection as shown in Figure 2.6 using the
following protocol:

1. CONNECTION START The connection is initiated by the new mem-
ber to a primary and sends a connection start with all member

18

2.3 REPLICA SET IN BASEX

New Replica Primary
| | connection start = 1
I - o S syncstart _ _ _ _ _
|
loop) ¢ datab
request database sync
[for all data- <! ML >»—1
bases with
outdated
timestamp] = - - - (iat_abgsg.cgnt_eni -_— = -
i
sync finished -
connection success
ﬁrEshed

-

Figure 2.6: Connection establishment message workflow.

specific settings. The settings can be modified by the user within
a configuration file. At the moment, the following information is
sent:

* Whether the member is voting in an election

¢ The weight of this member, relevant for a voting within an
election

The system can easily be extended to support more settings.

2. SYNC START After receiving the connection start, the primary respo-
nds by starting the synchronization process. Within this pro-
cess, all databases from the primary are bulk-updated to the
new member. Therefore, the current last updating timestamp
of all databases at the primary is sent to the new member. Also,
all database options are included in the message.

3. REQUEST DATABASE SYNC The new member processes the received
synchronization start message and applies all database options
from the primary at the local database context. After this, the
member compares all database timestamps with the ones sent
by the primary and sends for each database not having an up-to-
date timestamp a request database sync message.

19

2.3 REPLICA SET IN BASEX

4. DATABASE CONTENT Each database request is answered by the pri-
mary by streaming the database content to the new member.
Therefore, the internal storage files are streamed to the member.

5. SYNC FINISHED Finally, after all databases are updated, the new
member signals the primary that the synchronization is finished.

6. CONNECTION sUccCEss The primary acknowledges the connection
success and also sent back the complete topological information
about the replica set, i.e. about all members within the set. This
also includes the information about the new ID for the newly
joined member, as an unique and random ID is assigned to a
new member by the primary.

Following this exchange, a new member is connected to the replica set
as secondary. Notice that no election will be automatically triggered by a
new entering member. The replica will from now on receive and accept
updating messages sent by the primary.

Using the replica set topology sent by the primary, the new secondary
will establish a heartbeat to all other members within the replica set. The
details on the used heartbeat algorithm are explained in chapter 2.4.1.

2.3.2 Client connection

A client can connect to a replica set by connecting to a distributor. The
distributor will first authenticate the client and the client session is set up
with possible different connection preferences.

Authentication

In the current client/server architecture a modification of CRAM-MDs5 is
used to identify clients [Weiio]. It follows the same message flow, but
has few modifications in comparison to the published standard [KCKg7].
Whereas the standard only considers ASCII characters, the strings in the
implementation are UTF-8 encoded. Also, parts of a message are not sepa-
rated by white spaces as in the original specification, but by a binary proto-
col. The current authentication message flow is as follows:

1. A client starts the connection and connects to a TCP server socket.

2. The server sends a message with the current unix timestamp to the
client.

20

2.3 REPLICA SET IN BASEX

3. The client responds with a message containing the username, fol-
lowed by the MD5 hash of a concatenation of the MD5-hashed pass-
word and the timestamp.

4. The server looks up the stored MDs5 hash for the given user and also
computes the MDs5 hash of a concatenation of this hashed password
and the sent timestamp. If equal, the server responds with success,
otherwise it will return a failure.

However, CRAM-MDs5 has a number of problems. As the algorithms
predates the widespread usage of UTF-8 it was just designed for usage of
ASCII, therefore the current implementation in the client/server infrastruc-
ture is already not standards-compliant. More importantly, in the latest
specification of CRAM-MDs5, severe security flaws are mentioned and it is
concluded that "CRAM-MDs5 is no longer considered to provide adequate
protection"[Nero8]. First of all, the client is not able to verify the server
during authentication. This enables an attack to set up a server with a
fixed challenged instead of a timestamp and to use pre-computed hashes
to identify a client password. Another vulnerability is the password-based
nature. Although the implementation stores the password MDs5 hashed,
knowing the hashed password itself is enough information to successfully
authenticate against a server.

Another problem
is that hashing is
not sufficient for se- Client Server
curely storing pass- I
words. A hash ! timestamp .
should also always [
be salted to pre- |
vent against pre—computed MD5(MD5(password) + timestamp)] compute
rainbow table pass- | Success / Faiure 2l compare fo received message
word look-ups. How-

ever, using CRAM-

Figure 2.7: Authentication by the Client/Server infrastruc-

MDs there is no way ture using a modified version of CRAM-MDs.
to transport the salt,

therefore the stored
password cannot be salted. Also, the hashing algorithm is MDs5, which is
known to be cryptographically broken [WYo5] since a number of years and
in itself presents a security flaw.

Therefore we used a different protocol to securely authenticate a client
against a server. We decided to use Salted Challenge Response Authenti-
cation Mechanism (SCRAM) as defined in [NMMW10], which is part of

21

2.3 REPLICA SET IN BASEX

the family of Simple Authentication and Security Layer (SASL) protocols.
SCRAM is widely used for services like SMTP, IMAP or XMPP.
The protocol provides the following functionality:

* Passwords can be hashed and salted on the server side

¢ Authentication happens on both sides, i.e. the client also checks that
the server in fact actually did hold the correct password.

¢ The hashing algorithm is transparent and can be interchanged, what
makes the protocol future-proof. Even if a weakness in a hashing al-
gorithm is detected, we could easily switch to a new hashing function
without breaking existing clients.

Client Server

client-first: Gs2 header, user, client nonce > 1

| server-first: client + server nonce, salt, iterate
-€

client-final: GS2 header + channel binding,
nonce, ClientProof >

| :s‘erver-ﬁnalz verify

check the
server verify

Figure 2.8: SCRAM message exchange.

All messages in SCRAM are text-based and contain attribute/value pairs
separated by commas. Each attribute has a one-letter name. The authenti-
cation process is initiated by a client. The message exchange as shown in
Figure 2.8 works as follows:

1. CLIENT-FIRST The message starts with a GS2 header to ensure ex-
tensibility, e.g., for adding a security layer. The GS2 header must

be either "n", "y" or "p". It is followed by the username and a
random and unique nonce.

2. SERVER-FIRST The server responds with a nonce, computed by con-
catenating the client nonce and a random, unique nonce gener-
ated by the server. It also includes the salt used for hashing the
users password and an iterate count. The iterate count indicates

22

2.3 REPLICA SET IN BASEX

how many times the hashing algorithm must be applied. For
SHA-1 it should be at least 4096 to slow down potential attacks.

3. CLIENT-FINAL The client sends a base64-encoded GS2 header and
channel binding data. Also, it sends back the same nonce. Fur-
thermore, it includes the client proof computed by hashing the
authentication message with the salted password as key and
XORed with the client password. The authentication message
itself is a concatenation of the client-first, server-first and client-
final messages.

4. SERVER-FINAL The server computes the client proof itself and checks
whether it equals the one sent by the client. If it does not, the
authentication failed and is aborted. Otherwise, the server sends
back a server signature to proof it does hold the valid password
and there is no man-in-the middle-attack present. The server
signature is computed by hashing the authentication message
with the used salted password as input key. The client will then
verify the server signature and if not equal has to consider the
authentication process as failed.

After the authentication the initial mode settings are transmitted to the
distributor.

Query execution mode

Once a client is successfully connected to a replica set via a distributor, it
can send commands and queries to replica set to be executed. The client
can set several execution modes, affecting which member within the set will
actually execute the query. Database commands will always be sent to the
primary.

The following modes, as also shown in Figure 2.9, are supported, with
primary Only being the default:

PRIMARY ONLY A query will always be sent to the primary to be executed
there. This is the only mode to be used for updating queries as only
the primary can update data within a replica set. It is also the only
mode which ensures that the most up-to-date data will be returned.
Hence, it delivers strict consistency from client perspective. If an ap-
plication does not tolerate to see stale data, and to experience possible
isolation anomalies, this mode should be used.

23

2.3 REPLICA SET IN BASEX

mode process updating query | can return stale data | load-balancing
primary Only v
secondary Round-Robin Vv round-robin
Weighted secondary V4 round-robin
Specific Member V4 v

Figure 2.9: Comparison of different query modes for a client connection to deter-
mine the executing replication member.

SECONDARY ROUND ROBIN The query will be sent to any secondary. The
secondary to be used will be selected based on a simple round-robin
choice, i.e. the next secondary in a circular order of all Secondaries
will be selected. This provides a good option if it is acceptable to read
stale data and all nodes should receive an equal amount of queries to
process. This does not ensure that each secondary receives the same
amount of workload, as execution times can vary greatly between
queries and are not taken into account when distributing the query.

WEIGHTED SECONDARY A weighted round-robin scheme is used to deter-
mine the node which is used to execute a query. Based on the weight,
which can be defined for each member within a replica set, a percent-
age of queries is sent to a specific member. The percentage of queries
to execute for a specific member within a replica set is proportional to
the weight of this member in relation to the overall sum of all weights
within the replica set. Note that the application must be able to han-
dle stale data as well.

SPECIFIC MEMBER Using this mode a member has to be given as accom-
panying information. The query will be sent only to this specific
member. If the member is not available, the query will fail. The mem-
ber can be either a primary or a secondary. If you know that this
member is a primary, the query can also be updating.

The choice what client mode to use depends heavily on the application.
Of course, an application can open up multiple sessions to use different
channels. It might be a common strategy to use primary Only session for
updating queries and to use a secondary round-robin sessions, to distribute
read-only queries to several members in the replica set. This could lead to
isolation anomalies by the reading of stale data, but this might be toler-
ated by an application or handled on the client side to ensure strict ACID
properties.

24

2.3 REPLICA SET IN BASEX

2.3.3 Replication workflow

Based on our aims for the replication within BaseX we now have to decide
which of the presented update management strategy we want to use. Mo-
tivated by our requirement to not significantly decrease write performance,
we decided to use a lazy replication approach. Using eager replication, es-
pecially in a widely spawned network of replication members, would have
deteriorated write performance. Additionally, as shown in chapter 2.6 we
observed that many other database systems, relational and non-relational
alike, do use a lazy approach for replication.

Also, in many usage scenarios for BaseX reading stale data might be suf-
ficient for an application. As RESTXQ has become an important technology
within BaseX and many web applications make use of it, they might trade
the performance increase of reading stale data against the loss in strict con-
sistency. However, as we support multiple client query modes we still have
the possibility of ensuring that only most-recent data is read from a client
session perspective. This way, only the primary will execute queries and
we cannot load-balance the queries, but as performance and reliability are
an inherent trade-off, this presents a reasonable design decision.

Following this decision, we still have to decide whether to use a primary
copy approach or a Update Anywhere update strategy. Update anywhere
has the advantage that write executions can be distributed to all members in
the set and the write performance can therefore be increased. However, con-
current updating operations on multiple locations which are not synchro-
nized before a commit point can result in a write/write conflict. Hence, we
would need a solution for resolving conflicts, which would try to resolve
the conflict automatically for a number of cases. However, the theoreti-
cal problem remains that this concept introduces inconsistency within the
database system. In addition, conflict resolution is difficult to implement
and notoriously error-prone to coordinate. As BaseX is an ACID-compliant
database, we did not want to trade the increased performance by introduc-
ing inconsistencies.

Therefore, we decided against using a lazy update anywhere approach
and instead use a lazy primary copy approach. This has the advantage
that concurrency control is greatly simplified, as all updates take place at
one specific member. Also, it does provide a good performance for many
write/read scenarios. As disadvantage, this introduces the possibility of
reading stale data. However, using an appropriate query mode we can
avoid seeing consistency anomalies per session. It increases the flexibility
for a user by offering an approach to gain performance, but loose consis-
tency guarantees.

25

2.3 REPLICA SET IN BASEX

Non-updating query execution

Let us suppose that a client wants to execute a read-only query at a replica
set. By establishing a connection to a distributor we have to set a query
execution mode. If reading stale data is not acceptable, primary only mode
has to be used. Otherwise, any mode can be used with secondary round robin
being a reasonable choice for many applications to provide load-balancing.
If the performance of the members varies widely, it might be a reasonable
setup to set the weight of a member according to its performance and by us-
ing the weighted secondary mode increase the load for members with higher
performance while lowering it for members with less performance. Note
that depending on the query there might be different bottlenecks. Whereas
many queries with heavy database reads might be bound by 1/O oper-
ations, other queries could be computationally expensive and thus CPU
bound.

: Replica Set :

I |

| . :

| Primary :

I |

I |

I |

1. ser!d query |

' |

Chent :4 return jquery resuTt| DlStl"lbutOI‘ I
____________ |

I 4 Tetipy e, Seconda;]

| return qQUery Tesii Ty I

I |

I |

! |

: Secondary 3. execute query |

|

I |

Figure 2.10: A read-only query is sent to the distributor. Based on the query mode
it will be distributed to a certain member within the replica set. The member will
execute the query and return the result back to the client.

Regardless of the selected mode, a client replica session is operational
after the initial connection establishment. As shown in Figure 2.10 a query
can now be sent to the distributor, which will forward it to the appropriate
member according to the specified mode. The member itself will execute
the query, as it would be done in any non-replicated BaseX instance. As the
query is read-only blocking is not necessary. The result of the query will
now be returned to the client.

All queries sent to Secondaries must be read-only, otherwise they will be
aborted. This means that there can be no potential for an update, i.e. no
updating expressions are allowed on Secondaries. This means, that even if

26

2.3 REPLICA SET IN BASEX

a query in the end did not update any value due to the evaluation of the
query, a query is considered updating if it contains updating expressions.

Updating query execution

Updating queries have to be sent to a replica set using a primary only mode,
with the only exception by using specific member mode set to the current
primary. However, this seems to be only in very specific application scenar-
ios to be a viable solution due to the fact that a primary is automatically
elected and can change at any point in time.

So a query is sent to the distributor, which forwards the query to the
primary. There are two ways a database can be updated within BaseX.
Either via a database command or using XQuery Update*.

If the write operation is issued by a command, the command will sim-
ply be forwarded to all Secondaries, as commands are deterministic. The
commands are then re-applied at each individual secondary.

If the write operation is done via XQuery Update, there are two sepa-
rate modes we explored to update values. The mode has to be set in the
configuration at the start of a replica set member.

: Replica Set
Primary

|

doc 1
|
| exec“‘e doc 2
| query :
| plan doc n
|
|

|
1. send updating querz serialization

- g N (e T
| Client L4. return query rdsul] istributor |, >

send serialized
documents

T

|

|

|

|

|

|

|
|

|

. -
|

|

query flow

store documents store documents

replication flow

Figure 2.11: After an updating query is executed at a primary, the result is imme-
diately sent back to the client. During execution, a list of affected document as
created. This list is used to serialize all affected documents and these documents
will be sent to the Secondaries.

4 XQuery Update Facility 1.0 is a language extension for XQuery designed to update instances
of the XQuery 1.0 and XPath 2.0 Data Model. It is a W3C Recommendation since March
2011 and fully supported by BaseX.

27

2.4 FAILOVER HANDLING

The first one is document-centric, so if any part of a document is updated,
the complete document is replicated. This is inspired by the implementa-
tion of replication by other XML databases. While eXists relies completely
on document replication, MarkLogic replicates fragments. However, frag-
ments are usually set to be the size of a document (but a document can be
split up into multiple fragments), it is in fact quite similar. Also, as XML
data is stored in documents, XML-based applications are usually document-
centric, it is quite natural decision to also replicate data based on docu-
ments. Using the document replication mode a query will be executed
and apply all changes on the local instance. During the update, identifiers
of all modified documents are stored in a list. After the change is com-
mitted this list is used by the replication mechanism. It will serialize all
documents and send them to all connected Secondaries within a transac-
tion. The Secondaries will receive the documents, require all locks for the
affected databases, store the new documents and finally release the locks.
This way, the execution of the replication is atomic on the secondary. The
workflow is shown in 2.11.

Another approach is using the Atomic Update Cache (AUC), which was
introduced by [Kir13] to efficiently apply bulk update operations. The AUC
holds all atomic updates of a transaction in document order depending
on their location. The updates stored in the AUC are propagated to all
Secondaries. The Secondaries will then acquire the locks for the affected
databases, apply all updates on the specific secondary and release the locks.
This approach is clearly favorable if only a small part of a document is
updated as it avoids the overhead of serializing the complete document.
Due to the timely constraints of this thesis, the implementation was just
done in an early testing fashion, but showed promising results.

2.4 FAILOVER HANDLING

Members within a replica set can always fail, due to a number of reasons.
The application could misbehave, a network partition could occur, a server
might crash or a whole data center might experience a power outage. For
this reason it is inevitable to consider failures when implementing replica-
tion for BaseX.

Failover handling consists of two major parts: First, a failure has to be
reliably detected. This is a non-trivial task, as it is quite difficult to differ-
entiate between simple message loss and a unrecoverable misbehavior of a
member. We will solve this problem probabilistically using an accrual failure
detector.

28

2.4 FAILOVER HANDLING

Secondly, an appropriate action has to be initiated if a failure is detected.
Therefore, we incorporated a failover management strategy into the mem-
bers of a replica set.

2.4.1 Failure detector

Any asynchronous distributed system, i.e. informally any system without
an upper bound on message delays, faces the problem that consensus can-
not be reached deterministically in a system with possible failures. This
is due to the problem that a crashed process cannot be distinguished from
a very slow one. In [CT96], Chandra and Toueg introduced the concept
of unreliable failure detectors to detect crashed services within a distributed
system.

There are two major criteria with an inherent trade-off of any failure de-
tector. How aggressive a failure detector is determines how fast a failure
can be detected, whereas conservative failure detection reduces the risk of
wrongly suspecting a running service as failed, although it is still work-
ing correct. It is quite natural that the risk to wrongly suspect a node to
be failed increases if the time to measure a possible failure decreases, i.e.
both criteria are in conflict. Therefore, a failure detector should provide
a good indication of failed nodes while maintaining reasonably low false
positive estimates. As network topologies can vary widely and latency and
responsiveness are very different between e.g., a large-scale distributed sys-
tem deployed over several continents versus a small-scaled system within
a local network, reliable failure detection remains a major challenge.

As one of our design goals for replication within BaseX includes to sup-
port very different setups, this challenge is also crucial for a replication
system in BaseX to be versatile enough to adapt to very different usage sce-
narios. For example, it might be desirable to use replication within a replica
set spanned around multiple data centers throughout the world. This can
be beneficial in a number of ways; one reason could be to reduce latency
for users from different parts of the world as it is commonly done using
content delivery networks (CDN). It could also be part of a major availabil-
ity strategy in case a complete data center experiences an outage. On the
other side, it is quite common for databases to be replicated within a small
local network to improve performance, increase throughput or to increase
the level of availability. As the network behaves widely different for these
scenarios, it becomes quite clear that a simple binary failure detector solu-
tion is not adaptable enough. In general, a binary failure detector receives

29

2.4 FAILOVER HANDLING

monitoring input about the processes to supervise and produces a binary
output, indicating whether a process is either correct or faulty.

Failure detectors can be described as a three-layered architecture. On first
level, a failure detector is monitoring a group of services for their responsive-
ness, which is commonly done by sampling heartbeats or query/response
times. We will focus from now on solely on heartbeats, because we used
them in our actual implementation and from an theoretical point of view
they can easily be interchanged with some other form of measurement of
node responsiveness. The next layer is an interpretation of the monitoring
results. Using a binary failure detector, these two layers are tightly coupled
as the measurement is, based on the specific binary model, directly trans-
lated into suspecting a working or a faulty process. Following such a result,
a failure detection has to take an action to handle the faulty node. In many
cases, this will involve restarting or shutting down a faulty process. While
there is always a threshold to determine a binary output, this threshold
does not have to be a singular value. Instead, using an adaptive failure detec-
tor, this threshold can increase or decrease to incorporate changing network
conditions.

For further discussion, we introduce a formal definition of failure de-
tectors. We assume a distributed system consists of a set of processes
IT = {p1,...,pn}. We denote to a process p as being faulty if its behav-
ior deviates from its specification and as correct if it is not faulty. All faulty
processes are member of the set faulty(F) and all correct processes are
member within the set correct(F) = P — faulty(F). We assume the exis-
tence of a global time within the domain T, being an infinite countable set
of a real number without an upper bound.

A failure detector is a set of failure detector modules, each one attached to
a process to return information on a failure pattern within an execution. A
failure pattern denotes a function F : T s 2!, with F(t) being the set of
processes that have failed before or at time ¢. A failure detector history H
with range R is defined as a function H : IT x T — R, with H(p,) being
the value output function by the failure detector module of process p at
time t. If g € H(p, t) we say that p suspects q at time t in H. In the remainder,
we will use two processes p, g € F with g monitoring p.

A class hierarchy of unreliably failure detectors was defined by Chandra
and Toueg in [CT96]. The failure detectors we will explore are within the
eventually perfect class, denoted as ¢P. A history of an eventually perfect
failure detector will have the following properties:

30

2.4 FAILOVER HANDLING

Property 1 (strong completeness). Eventually each faulty process in F is per-
manently suspected by every correct process.

VF,VH € D(F),3t € T,Yp € failed(F),Vq € correct(F),¥t >t:p € H(q,t)

Property 2 (eventual strong accuracy). There is a time t after which correct
processes are not suspected by any correct process.

VF,VH € D(F),3t € T,Vp € F,Vq € correct(F),Vt >t:p & H(q,t)

Following these properties we can define an eventual perfect failure de-
tector as:

Definition 2.4 (eventually perfect failure detector). An eventually perfect
failure detector P is any failure detector with a history H(q,t) which holds for
all distinct processes p and q the strong completeness (Property 1) and eventual
strong accuracy (Property 2) properties.

The quality of service provided by a failure detector can be defined by
several metrics such as:

* The detection time is the elapsed time since p fails and until g suspects
p permanently.

* The average mistake time measures the time a process g wrongly sus-
pects a process p of being faulty.

¢ The query accuracy probability is the probability that for a given random
time t the output of a failure detector is correct.

Accrual failure detector

Compared to a binary failure detector, an accrual failure detector will de-
couple the dependency between monitoring and interpretation and will
instead move the interpretation to the network level. As requirements can
differ so widely, interpretation of the monitoring results is best left to an ap-
plication. To refer back to the example from above, it is quite clear that the
same response times will have a very different meaning whether a process
within the same LAN or on another continent is supervised. Also, it might
be appropriate to take different actions at different levels of suspicion that a
process may have failed. Therefore, an accrual failure detector will output a
value on a continuous scale, representing the degree of confidence that the
supervised process has indeed failed. An accrual failure detector can easily
be converted to a binary one if a single threshold is defined. The advantage

31

2.4 FAILOVER HANDLING

of using accrual failure detection is that we can manage multiple thresholds
to trigger different actions. For example, in a distributed system with the
responsibility to distribute jobs to many nodes, a low threshold could be
defined to temporarily suspend the submission of new jobs to a node and
another higher threshold to shutdown the node indefinitely.

As already mentioned, a failure detector cannot be implemented deter-
ministically in all possible asynchronous systems with failures. This condi-
tion also holds for accrual failure detectors, as it is mainly an abstraction
from a binary failure detector. However, an accrual failure detector can be
implemented probabilistically.

The confidence level can be formally defined by the suspicion level of an
accrual failure detector:

Definition 2.5 (suspicion level). The suspicion level of process q with respect to
process p is the function sly, : T — Ry . The function sy, has a finite resolution.

In addition, the suspicion level also satisfies the following two properties:

Property 3 (accruement). If process p is faulty, then eventually the suspicion
level sly,(t) is monotonously increasing at a positive rate, i.e. the suspicion level
may remain constant just for a bounded number of queries Q:

Vp € faulty(F),3K3IQ € Z*,Vk > K :
(slgp(tg(k)) < slgp(tg(k+1))) A (slgp(ty(k)) < slgp(ts(k+Q)))

Property 4 (upper bound). If process p is correct, then the suspicion level sl (t)
has an upper bound SLy,y.

Vp € correct(F),3SLyax, ¥t € T : sy, () < SLyax

From this we can directly define the class of accrual failure detectors

OPae:

Definition 2.6 (accrual failure detector). An accrual failure detector is any
failure detector within range R = Ry and a history H(q,t)(p) = slyp(t) which
holds for all distinct processes p and q the accruement (Property 3) and upper
bound (Property 4) properties.

This definition contains a number of interesting properties, which make
them well-suited for a failure detector and for a real-world implementation.
For example, the upper bound is unknown. Otherwise, applications could
just compare the suspicion level to the known bound, but it is desirable

32

2.4 FAILOVER HANDLING

to leave the interpretation to the application itself. Also, the accruement
property allows for stationary periods and does not employ strict monotony.
Otherwise, an implementation might have difficulties to return an increased
value upon every query. This would entail to either access a hardware clock
with a fine enough resolution (which might not be available) or to artificially
increase the suspicion level. Also note that the accruement property is
defined without any reference to a time. This way the model does not
require access to any synchronized clock.

An accrual failure detector of class ¢P,. has the same computational
power as an binary failure detector of class ¢P, i.e. any problem solvable by
a failure detector within ¢P can also be solved by a failure detector within

OPoc.

@ accrual failure detector

The ¢ accrual failure detector provides a probabilistic implementation of an
accrual failure detector and was defined by Hayashibara et al. in [HDYKog4].

The suspicion level is given by a value ¢ = sl;;,, which is dynamically
adjusted to reflect current network conditions. The architecture to compute
@ can be described by three phases:

1) SAMPLE HEARTBEATS: The monitoring process g sends heartbeats
to the monitored process p and stores the response time in a
sampling windows with a fixed size. Whenever a new heartbeat
response arrives, it is stored in the window and after the old-
est heartbeat has been deleted in case the window was at full
capacity.

2) ESTIMATE THE HEARTBEAT RESPONSE TIME: The response times of
a heartbeat can be estimated by using a normal distribution. The
mean y and the variance o2 of the samples within the sampling
window can be used as parameters for a distribution function.
The probability Py, (At), that a given heartbeat will return more
than t time units later than the previous heartbeat, can be mod-
eled using the cumulative distribution function (CDF) ®(tp) for a
normal distribution, which uses the probability density function

f6p,02):

33

2.4 FAILOVER HANDLING

Plater(tA) = 1_q>(tA> (2.1)
—+o0
= 1— [f(x;p;0%)dx (2.2)
tA/
oo (x—p)?
1 - 7
= 1-— 202
1 (T\/ZTTtA/e oc dx (2.3)

3) COMPUTE ¢@: Based on the estimate we can now compute ¢. We
denote t,,. as the time unit when the previous heartbeat arrived
and t,, as the current time unit. Then ¢ is defined as:

(P(tnow) = - loglo(Plater(tnow - tlast))

It is easy to show that a ¢ accrual failure detector is a failure detector of
class ©Pyc. As ¢ is defined using a CDF and every CDF over a random
variable is monotonically increasing, the accruement property (Property 3)
immediately follows. Similarly, as the CDF for the normal distribution has
a lower bound of 0 and an upper bound of 1 and is directly used to define
@, it follows that the property upper bound (Property 4) is also valid.

Assuming that the network is probabilistically stable, this means when
using a threshold ® to suspect a process of being faulty compared to the
@ value, the likelihood of a false positive is 10~®. Thus, an application
can increase the threshold ® to increase the conservativeness of the failure
detection, i.e. minimize the probability to wrongly suspect a process to be
faulty. Alternatively, the threshold can be lowered to increase the aggres-
siveness of failure detection, i.e. to detect failures faster. This adaption of
the threshold can be done by the application in a flexible manner and does
not depend on static parameters.

Thereby, an ¢ accrual failure detector allows a flexible framework for
failure detection without the need to tune parameters statically for a single
application. As was shown in [HDYKo4] this comes without any signif-
icant performance drops in reference to the above define qualities of ser-
vices and therefore provides much more flexibility with the same quality of
service levels as provided by other adaptive failure detectors such as Chen
or Bertier failure detector.

CDF estimation accrual failure detector

In [SPTUoy] Satzger et al. described an interesting approach for a new
adaptive accrual failure detector, which we will refer to as CDF estimation

34

2.4 FAILOVER HANDLING

accrual failure detector. It is largely based on the ¢ accrual failure detector,
but instead of precisely calculating the CDEF, the CDF is estimated. Suppose
a process p maintains a list S with the latest X received heartbeat times and
also maintains the last received heartbeat time ¢;,;.

The sample times within S and their corresponding frequency can be
described as a histogram. This histogram can be seen as a rough estimate of
a probability density function. From the history the cumulative frequencies
of values within S can easily be computed and this cumulative frequency
can be seen as an estimate of the CDF.

Algorithm 2.1 CDF estimation accrual failure detector
1: function INIT

trast — —1 > last arrived heartbeat time
S neWQueue() > S is initialized as a new, empty list with a maximum size of p
end function
: function RECEIVEHEARTBEAT(111, t01)
if f = —1 then
f < tnow
else

e PN > B W N

th=1t— tlust

-
e

tiast = tnow

append fp to S

if SiZG(S) > U then > If the queue is full, remove the element first inserted
13: remove head of S

14: end if

15: end if

16: end function

17: function GETSUSPECTLEVEL(q, t,00)

[
=

=
N

18: tA = tnow — tigst
19: count <— 0
20 for all {x € S|x < t,} do
21 count < count +1
22: end for
. count
23: return iz (S)

24: end function

So we can now model the suspicion level for this failure detector similar
according to equation 2.1, but this time we will use an estimate of the CDF
to calculate the probability Pier (tnow — tiast) by using the set Syin max = {x €
S|x < (max — min)}.

35

2.4 FAILOVER HANDLING

Slqp(tnow> = Plater(tnow - tlast) (24)
‘Stl £ |
— asts-now (2'5)
Bl

So to provide such an CDF estimation accrual failure detector, the given
suspicion level can be computed using Algorithm 2.1.

In comparison to the ¢ accrual failure detector, this has three main bene-
fits:

® The calculation cost to compute an suspicion level is reduced; by us-
ing an appropriate data structure for S, a suspicion level can be com-
puted within O(log |S]).

* The ¢ accrual failure detector is restricted to networks with a roughly
normal distribution of heartbeat arrival times, whereas this approach
has no such limitation. However, this advantage is quite likely rather
weak in real-world situations, as network arrival times will mostly be
adequately modeled by a near normal distribution.

¢ It simplifies the implementation by its straight-forward model.

The presented failure detector is also an accrual failure detector. The
accruement property (Property 3) holds, as a cumulative function of non-
negative values is always monotonously increasing. The upper bound prop-
erty (Property 4) also holds as the estimation is normalized and will never
exceed 1.

The experiments by Satzger et al. showed that the CDF estimation accrual
failure detector is similar in performance to the ¢ accrual failure detector
in terms of falsely suspected processes and the average detection time.

Because of a similar performance, lower computational cost and simpli-
fied implementation we decided to use the CDF estimation accrual failure
detector for a replica set within BaseX.

2.4.2 Failover management

Each secondary within the replica set sends a regular heartbeat using in
a configurable interval t5 to the primary. This way, a primary can detect
faulty Secondaries. If a secondary is suspected to be faulty, it will be re-
moved from the replica set. All connected distributors will be notified by
the primary of this removal to not send queries to this secondary anymore
via the non primary-only query execution modes.

36

2.4 FAILOVER HANDLING

As we use an accrual failure detector to detect faulty members, a suspi-
cion level is collected for each secondary on the primary. The higher the
suspicion level s/, the more likely is the member to actually be failed. The
suspicion level is a continuous random variable without an upper bound.
We assume that sl ~ N (u, (72), i.e. the normal distribution. We sample
mean p and variance o2 over the set of the latest suspicion levels of all
Secondaries.

The CDF of a normal distribution is defined as

x o (t—p)?

P(x) = ! /ei 202 dt (2.6)
oV2r S

As a CDF describes the probability that a random variable with a given
probability distribution will hold a value less or equal to x, it can be used
to model a statistically significant outlier of the data set. Our goal is to
detect any secondary with a suspicion level significantly larger than the
average. Hence, we define the following definition to define a secondary as
malfunctioning:

Definition 2.7. A secondary s is deemed faulty, if for the suspicion level sps, the
CDF ®(x) of a normal distribution and a given Ay the following holds true:

CD(S;’JS) >AAMEeERADS A L]

The value A; can be configured by the user. Therefore, a user can choose
the value according to application needs. Deploying a replica set in a local
area network will most likely result in less variance than using a replica set
in a globally deployed cloud network environment. Hence, the user can set
A1 accordingly to not trigger many false positives or to quickly detect failed
nodes. Also, it will often be suitable to lower the value of A; if replica set
has just a few members. In this case, the statistic significance of the mean
and standard deviation are decreased, i.e. an outlier is more likely.

Also, a primary sends a heartbeat message to all other members within
the replica set (which by definition will be Secondaries) in the same interval
ta. Using the same accrual failure detector, we will use this heartbeat again
to compute suspicion level for the possible failure of the corresponding
member, in this case the primary. An example for a failing primary, the
detection and the taken action is shown in Figure 2.12.

Contrary to primary, which provides a set of suspicion levels of several
Secondaries, this time we only have this one suspicion level. Hence, it will
be assumed that a primary is faulty if the suspicion level is greater than a

37

2.5 LEADER ELECTION

given suspicion level threshold, denoted as A,. Similarly to other parameters
this value can be configured by the user within the configuration settings.

O A —— Repiicaset AN
I |
I !] i
| . Primary ! ! . P]
\| Distributor | \| Distributor i
i i | |
] ! 1 i
| i
i : i 1
p Secondary |! l ! & Secondary |!
I ! | 2 !
'| Secondary] '| Secondary v\ S 1
| ! ' < |
<
i i i |
! ! p Secondary]
[Secondary] ! suspicion level !
| i | i
i Secondary | ! i greaterthan | % Secondary | |
! 1 ! threshold 1
I ! | I
I ! | l
I ! I l
e e e e e | e e e e i
TReplica Set e T |
|]
|
! L Prj i
| | Distributor]
election started after a : :
Secondary received 3 1 new' |
Primary failed mess- | topology! !
ages ! ! '
! I Secondary !
ﬁ []
!'| Primary]
i i
I |
i Secondary]
: suspicion level :
! greater than Secondary |
! threshold '
| I
|]
|]

Figure 2.12: A primary sends heartbeats to all Secondaries. If a secondary suspects
a primary to have failed due to non-arriving heartbeats, it notifies all Secondaries
within the set. If any secondary gets a majority of such messages, an election is
initiated. When the new primary is elected it will notify all distributors of the new
replica set topology.

If a failure is detected by a secondary, it will communicate it to all other
Secondaries. If any secondary receives a majority of votes for the removal
of a primary, it will initiate a leader election and remove the former primary
from its view of the replica set topology. The newly elected primary will
inform all connected distributors about the new topology of the replica set.

Assuming the replica set consists of n members there will be 2(n — 1)
heartbeat messages sent every t, time units. t5 can be set within the con-
figuration and defaults to 2 seconds.

2.5 LEADER ELECTION
2.5.1 Problem definition

Leader election in general is an algorithm for choosing a distinct process
from a set of processes to serve a special functionality within this set. Within

38

2.5 LEADER ELECTION

a BaseX replica set there is a primary, which acts as a leader and has the
special responsibility to update data items and propagate the changes to
all secondaries. The primary is also responsible for members joining and
leaving the set.

Each replica set member can have one vote in an election. A member
can be configure to be non-voting and will not participate in an election
process. Exactly one member will be elected as new primary at the end
of a leader election run. A member can be configured to solely serve as
secondary, i.e. is not eligible during the election. Only members with
the most recent updating timestamp of any visible member within the set
are eligible. The updating timestamp is the timestamp of the last applied
updating operation.

While an election is in progress, there is no primary present in the replica
set. Thus, updating operations will not be accepted. This is the primary
reason why we designed a leader election algorithm which will elect a new
primary fast to minimize the time a replica set is in a read-only state.

There are several reasons why a election may be triggered:

* anew replica set is initialized
¢ the primary of a replica set voluntarily steps down
¢ a secondary loses contact with the primary

¢ the primary loses contact to the majority of the secondaries

After triggering an election it is checked if the election will take place.
The election is initiated iff a calling member sees a majority of the members
in a set to avoid establishing two separate replica sets due to network par-
titions. If the election does not take place, no new primary will be elected
and the replica set will be put into read-only mode until the issue is re-
solved by an administrator. Thus, a replica set cannot stay fully functional
if more than half the members in a replica set fail.

To formalize election algorithms, we introduce the notion that a leader
process is elected from a set IT = {p1,p2, ..., pn} with n processes. Each
process has a process number, which is unique and totally ordered within
the set. The process with the highest process number will win the election.

A process can call an election to initiate a leader election, but one process
does not call more than one election at a time. As elections can be called by
multiple processes simultaneously, up to n leader elections can be initiated.

Based on this conditions, we can formalize the requirements for any run
of a leader election algorithm to hold the safety and liveness property.

39

2.5 LEADER ELECTION

Property 5 (safety). At most one process p; is a leader.
Vpi,pj € IL,i # j: = (leader(p;) N leader(p;))

Property 6 (liveness). Eventually, all processes are either a leader or non-leader
and are aware of at least one elected leader.

Vp;i3p; € 11 : (leader(p;) VV nonLeader(p;)) N leader(p;)

2.5.2 Bully algorithm

The bully algorithm was introduced by Garcia-Molina in [Gar82]. It is
named bully, because the process with the highest process number will
force processes with smaller process number to accept it as leader, i.e. it
will bully them into acceptance.

It makes the following assumptions:

i. Message delivery between processes is reliable.

ii. The system is synchronous and uses timeouts to detect process fail-
ures. The time time T is an upper bound for the total elapsed time
from sending a message to a process until receiving a response.

iii. Every process knows the process number of any other process in the
set and communicates with each other processes.

Although a process knows the process number of each process in the set,
it does not known whether the process is currently available or not.

The election protocol is divided into two parts. First, a process p; that
calls an election, notifies all processes with a higher process number of
the election. If any node responds, p; knows it can not be the new leader
and will finish its participation in the election and wait for a new leader
to be announced. However, if no process answers within the time T, the
initiating process assumes that all other processes are unavailable and that
the process itself is the new leader. All notified processes now behave in
the same way and notify on their own processes with a higher process
number than themselves. During an election run, each process only sends
out such notifications once. If a process does not get any response in T it
will start the second part of the protocol. The second part of the protocol is
the new leader announcement phase, whereby a new leader sends out an
announcement of its leadership to all processes. The protocol is shown in
Algorithm 2.2.

40

2.5 LEADER ELECTION

Algorithm 2.2 Bully election algorithm

=

: function CALLELECTION(p;) > p; calls an election

2. forall p; € IT, pc(p;) > pc(p;i) do

3: Send ELECTION to p;

4 end for

5: wait T

6: if —received(ANSWER) then

7: send announce

8: end if

9: end function
10: function RECEIVEELECTIONMESSAGE(p), p;) © p; received an ELECTION message

from p;

11: Send ANSWER to p;
12: call CALLELECTION(p))
13: end function
14: function ANNOUNCE(pl‘) > p; announces itself as leader
15: for all Pk € I1, pi 7& Pk do
16: Send ANNOUNCE to pi
17: end for

18: end function

The protocol execution is shown by example in Figure 2.13. There are
5 processes within the process set IT = {p1, p2, p3, pa, p5} and the process
number is in the range of the natural numbers IN (and therefore totally
ordered). The process number of each process is equal to the index number
of the process.

The safety property is clearly met with this algorithm, as a process with
a lower process number will detect the existence of a process with a higher
process number. The liveness property also holds, as the upper message
time T and the reliable delivery of messages will eventually result in a
process to announce itself. Also, by definition each process not being a
leader is a non-leader.

2.5.3 Modified Bully algorithm

In [MMMo4] Mamum et al. introduced a modified bully algorithm, based
on the original bully algorithm by Garcia-Molina. Therefore, it is based
on the same assumptions as the original bully algorithm. The algorithm is
shown in Algorithm 2.3.

41

2.5 LEADER ELECTION

(a) py calls an election and
notifies all process with a
higher process number

(d) p4 answers the notifica-
tion. p; does not receive
any response within time

. '
e '
'

'
I
'
'
. .

(b) All processes answer
the notification. As ps is
unavailable it does not sent
a response.

(e) As py did not receive
any response it announces
itself as the new leader to

(c) The notified processes
now notify in turn their
processes with a higher
process number, i.e. p3 no-
tifies p4 and ps and p4 no-
tifies ps.

T. all processes.

Figure 2.13: Bully protocol execution for an election with five processes. ps is
currently not available.

Any process can call an election by notifying all processes with a higher
process number. A notified process will respond to the sender. If the elec-
tion initiator does not receive any response, it can reliably assume all other
processes have failed and announces itself as coordinator. Up to this point,
the algorithm is identical to the original bully algorithm. The modification
is build on the handling when a response is actually received. Collecting
all responses, the process knows the active process with the highest process
number. Therefore, it can immediately announce this process as the new
leader. The initiating process coordinates the complete election run.

An example protocol execution is shown in Figure 2.14.

In the worst case, i.e. the election is called from the process with the
lowest process number, O(n?) messages in a process set with n processes
are needed for electing a new leader using the original bully algorithm.

42

2.5 LEADER ELECTION

Algorithm 2.3 Modified bully election algorithm

=

=R
noQ

=
N

=
*

14:
15:
16:
17
18:
19:
20:

21:

function CALLELECTION(p;) > p; calls an election
for all p; € I1, pc(p;) > pc(p;) do
Send ELECTION to p;
end for
wait T
if —received(OK) then
send ANNOUNCE(p;)
else
Pmin € T <= Vpi € T1: pe(ppin) < pe(pr)
send ANNOUNCE(Pin)
end if

: end function
: function RECEIVEELECTIONMESSAGE(p;, p;) © p; received an ELECTION message

from p;
Send Ok to p;
call CALLELECTION(p))
end function
function ANNOUNCE(pi) > p; announces itself as leader
for all p; € 11, p; # px do
Send ANNOUNCE to pi
end for
end function

Using the modified version, only O(n) messages are required in the worst
case. In the best case, i.e. the process with the highest process number calls
the election and immediately announces itself, both protocols need O(n)
messages.

2.5.4 Modified Bully algorithm with unreliable delivery guarantees and limited

eligibility

The original and the modified bully algorithm both assume that message
delivery between processes is reliable. However, as Akka only guarantees
at-most-once delivery guarantees, we have to consider lesser assumptions.
Hence, we developed the following assumptions:

¢ The set of process numbers is totally ordered.

43

2.5 LEADER ELECTION

O
() o)

<

! i P4

(a) py calls an election and (b) All processes answer (0) py identifies the re-
notifies all process with a the notification. As ps is sponding process with the
higher process number unavailable it does not sent highest process number.
a response. This process will become
the new leader, in this case
Pa. pa is now send via a Co-
ORDINATOR message to all

processes.

Figure 2.14: Modified bully protocol execution for an election with five processes.
ps is currently not available. Note that the first two phases are identical to the
original bully algorithm.

* Each process knows the process number of each other process in the
set. However, a process does not know if another process is active or
eligible at a certain time.

¢ The eligible process with the highest process number is elected as new
leader.

* Messages between processes are sent at most once and are sent in
order for each sender-receiver pair.

Apart from unreliable message delivery guarantees, another distinction
is the proposed eligibility of a process. In the two previously introduced
algorithms we always assumed that each process can be elected. However,
we do have a different application requirement. When the primary of a
replica set fails we want a new primary with the most recent update times-
tamp to take over, as otherwise the loss of data is increased. Therefore, only
processes with the highest timestamp of the replica set can be elected. This
eligibility criteria could also be something different from a timestamp and
it could be easily adapted. However, for the simplicity of explanation we
assume from now on that the eligibility criteria is to have the most recent
timestamp in the replica set.

Also, the most recent timestamp could be known when starting an elec-
tion. Suppose, the election is gracefully initiated by a step-down of the

44

2.5 LEADER ELECTION

current primary. This way, the primary will suspend accepting updating
operations and call an election, knowing the most recent timestamp ts;,4x.
Of course, when a primary fails unexpectedly and the failure is detected
by a secondary, the most recent timestamp is not known to any process in
the set. Therefore, we denote to an unknown timestamp as L. To check for
message drops, we retry sending a message up to x times.

The algorithm can be divided into three phases. In the first phase (shown
in Algorithm 2.4) the process p; calling the election sends a notification to
all processes with a higher process number than itself. It waits to receive
replies from all processes and, as already mentioned, retries sending the
message up to k times. A processes receiving a notification replies with an
Ok response, accompanied with its updating timestamp ts. The calling pro-
cesses now checks all received responses and identifies a candidate process,
which must have the most recent timestamp and is the process with the
highest process number. If ts,,x was given when calling the election and
the candidate process has the same timestamp, we can stop the election pro-
cess. As no process can have a more recent timestamp and a higher process
number, the candidate process must be elected as new leader. Hence, the
second phase of the protocol can be skipped and the candidate process will
immediately be announced as new leader.

Otherwise, the calling election process will now check the processes with
lower process numbers for availability and eligibility, as shown in Algo-
rithm 2.5. Therefore, a notification is sent to all processes with a lower
process number (up to x times). The processes reply with their last up-
date timestamp. After receiving all responses, we can now determine the
absolute s, by getting the most recent timestamp of all responses from
processes with a lower process number and the timestamp of candidate
Process Peandidate- AS Peandidate TEPresents a local maximum for all processes
with a higher or equal process number, it is guaranteed that we compute
the most recent timestamp of all processes still available in the set.

Hence, we can now transition to the third and final phase by announcing
Pcandidate @S New leader. This phase is formalized in Algorithm 2.6.

The announcement phase is once again with a acknowledgement mes-
sage. Otherwise, the message is retransmitted up to x times. The announce-
ment of the new leader is done by the election calling process. All processes
are informed of the new leader and acknowledge the message receive with
an AcCK.

Regarding the implementation, we would like to mention that using
blocking operations in the algorithm does not translate to blocking calls
within our implementation. Wait calls and sleeps can also be implemented
in an event-driven way. Given that Akka is based on asynchronous events

45

2.5 LEADER ELECTION

and the overall beneficial performance of non-blocking operations, we im-
plemented the algorithm in a non-blocking way.

An example protocol execution for this modified version of the bully
algorithms is shown in Figure 2.15.

46

2.5 LEADER ELECTION

Algorithm 2.4 Phase 1 of the modified bully algorithm with unreliable de-
livery guarantees and timestamp eligibility.

1: function CHECKHIGHER(pi , tsmux) > p; calls an election, tsyaxcan be the unknown

9 N

e * N > w

10:

118

128

13:

14:

15:
16:

17:
18:

19

20:

21

value L or a real maximum value
x <+ 0
while x < x and not all responses received do
for all p; € I1, pc(p;) > pc(p;), noResponse(p;) do > Send a message to
all processes with a higher process number, which did not sent back a response yet
Send ELECTION to p;
end for
wait T
x<—x+1
end while
S pj € 1’€C€iZ)€dR€SpOTlS€S U pi > Set of all process which did sent a response

and the calling process

tScandidate < pj €S, pc(p]) > pC(pl> : max(tsp’.) > most recent known
timestamp of all processes
Pcandidate < max({p] & S, tSpj = tscandidate}) > eligible process with the

highest process number
if 1550y 75 L A tSmax = tScandidate then > If ts,0x Was given and any process
holds the same timestamp as f5,,,x, announce this process as new leader
Call ANNOUNCE(pcandidute)
else
Call TRANSFERELECTION(P, Peandidate)
end if

end function
: function RECEIVEELECTIONMESSAGE(p]' ’ pl) > p;j received an ELECTION message

from p;

Send Ok(fs),) to p;

end function

47

2.5 LEADER ELECTION

Algorithm 2.5 Phase 2 of the modified bully algorithm with unreliable de-
livery guarantees and timestamp eligibility.

1: function CHECKLOWER(pi ’ pcandidate) > Transfers the election responsibility to the

+

L PN > w

10:

118

12:

13:

reachable process with the lowest process number
x<+0
while x < x and not all responses received do
for all p; € I1, pc(p;) < pc(p;), noResponse(p;) do > Send a message to
all processes with a lower process number, which did not sent back a response yet
Send ELECTION to p;
end for
wait T
x<x+1
end while
S+ pj € receivedResponses U Peandidate © set of all processes with lower process
number and the candidate process
tSmax pj €S, pC(p]) > pC(pl) : max(tspj) > most recent timestamp of all
processes
Pcandidate < max({pj es, tSp]. = fSiax }) > eligible process with the highest
process number

Call ANNOUNCE(Peandidate)

14: end function

Algorithm 2.6 Phase 3 of the modified bully algorithm with unreliable de-
livery guarantees and timestamp eligibility.

[

13:

: function ANNOUNCE(pi) > p; announces itself as leader

while x < x and not all responses received do
for all py € I1, p; # px, noResponse(py) do
Send ANNOUNCE to py
end for
wait T
x<x+1
end while

end function
: function RECEIVEACKNOWLEDGMENT(P;, Pleader)

store preqder as new leader
Send Acx to p;

end function

48

2.5 LEADER ELECTION

8

(a) py calls an election and
notifies all process with a
higher process number

ts:\\ Pcandidate = P1
5]0~

(d) p; answers the notifi-
cation and sends back the
timestamp 10. As this is
greater than the timestamp
of the current candidate, p;
becomes the new candidate.
As we have checked all pro-
cess, p; will become the
new leader.

Pcandidate = P3

Q),"/’ o)’r
T g

®
8

(b) All processes answer
with their respective times-
tamp As ps is unavailable
it does not sent a response.
Based on the timestamps
and process numbers, a p3
is determined to be candi-
date, as it has the highest
process number of all cur-
rently involved processes
with the maximum times-

tamp.
Pr ‘

(e) All process are notified
of the new leader p;.

&

Pcancidate = P3

®

8

(c) The calling process now
has to check the processes
with lower process num-
bers, as they could have
a more recent timestamp
than the current candidate.
Hence, all processes with a
process number lower than
p3 are notified.

(f) Each process has to ac-
knowledge the new leader
to allow retransmissions for
dropped messages.

Figure 2.15: Modified bully protocol with unreliable delivery guarantees and times-
tamp eligibility execution for an election with five processes. Each circle represents
a process, whereby the upper half is the process name with the process number
as index and the lower half is the most recent update timestamp. ps just failed,
therefore a new leader has to be elected.

49

2.6 RELATED WORK

2.6 RELATED WORK

Many DBMS use replication and a wide variety of consistency guarantees
and concurrency control algorithms are enforced. We will now shortly de-
scribe how various other relational and NoSQL databases handle replica-
tion and what levels of consistency they provide.

IBM DBz is a relational DBMS and uses a lazy update anywhere ap-
proach. It supports different replication modes, Q replication, SQL replica-
tion and event publishing which share the characteristic that transactional
data is sent to replicas after commit [03; KKLKog]. It uses a publish-
subscriber model with message queues or staging tables to propagate up-
dates. It provides transactional, but not mutual consistency. It supports an
advanced conflict resolver to reconcile conflicts.

Oracle supports a number of different replication modes [GFo3]. The
databases can be set up to support eager or lazy, primary copy or update
anywhere replication concepts or any combination thereof. Using eager
replication, strict 2PC is used to ensure consistency. Lazy replication sup-
ports conflict resolution. Updates can either occur solely on a single master
(primary copy) or on multiple masters (update anywhere). Hence, Oracle
supports transactional consistency and can support mutual consistency, if
required by the application.

MongoDB is a document database, based on a binary JSON format, and
uses a lazy primary copy approach and was a major inspiration for our
design [14b]. MongoDB features a replica set, which automatically elects
one of its member as primary with all other replicas being Secondaries.
The primary is the only member within the replica set accepting updates,
therefore the replication uses a primary copy approach. These updates will
be propagated after the transaction has already been committed, making
it a lazy approach. Submitted queries can use different levels of read and
write concerns to define when and how a query is processed and commit-
ted. Hence, MongoDB can provide transactional consistency and provides

eager propagation lazy propagation consistency types
database | primary copy | update anywhere | primary copy | update anywhere || transactional consi y | mutual consi y
DB2 Vv Vv
Oracle v v v v v v
MongoDB vV N Vv
Cassandra Vv vV v Vv
eXist v Vv
MarkLogic v Vv Vv

Figure 2.16: Comparison of replication types and provided levels of consistency of
several popular DBMS.

50

2.6 RELATED WORK

mutual consistency. However, as MongoDB by default only supports even-
tual consistency, also the replication consistency level is limited to eventual
consistency.

Apache Cassandra, a column store built for commodity hardware and
cloud usage, uses an update anywhere protocol. It can be used both in
an eager or in a lazy fashion as it supports tunable levels of consistency for
write and read queries [Bla1o]. Therefore, Cassandra supports both transac-
tional and mutual consistency, and also drops these strict consistency levels
for higher availability and lower response time, depending on the applica-
tion use case.

eXist is an XML database and XQuery processor and uses a master/slave
replication strategy. The master is the only updating location. An update
will trigger the replication manager after commit and serialize the complete
document and then send the complete document to all replicas [14a]. Thus,
it is a lazy primary copy approach. This provides mutual consistency, but
no transactional consistency when data is also read from slaves.

MarkLogic is a document-centric XML database. It uses two different ap-
proaches of replication[13], database and flexible replication. Both are lazy
primary copy approaches, but only database replication enforces transac-
tional consistency. Flexible replication is mainly a trigger mechanism after
data has been updated, while database replication is a more advanced con-
cept by detecting and replicating changes to another fragment.

51

PERFORMANCE

Up to now, we introduced our design goals and based on them we chose
an architecture to fit these goals. Many individual components of the repli-
cation system were tailored to fit the specific needs of a document-centric
XML database. In this chapter we want to explore how well the architecture
behaves to our expectations.

3.1 TEST ENVIRONMENT

We use the XMark data set as introduced in [SWK+o02] to run our experi-
ments. XMark is a standardized data set often used for performance mea-
surement for XML data. The data is modeled after an Internet auction site,
consisting of open and closed auctions, items and users. Hence, the data
set has some semantic meaning and is not simply an artificial data set.

Using the provided data generator, we can choose a scaling factor to de-
termine the size of the created document. The size for different factors we
use is shown in Figure 3.1. The data will be generated into one single doc-
ument. We can also specify a split count, to evenly split up the documents
into several parts. The split factors indicates the number of elements rep-
resenting a business object (such as auction, user or item). Hence, the files
have a natural split, but are only roughly equal in size. However, the file
size varies just in a small margin and is not that relevant.

scaling factor document size # of elements and attributes

0.01 1.2 MB 21048
0.1 12 MB 206130
1 112 MB 2048180

Figure 3.1: Scaling factors for XMark data and the resulting document size and
number of elements and attributes combined.

52

3.2 TRANSACTION LATENCY

As testing environment we use Amazon EC2 instances. We use t2.micro
instances, which have the following performance parameters:

¢ Intel Xeon Processors operating at 2.5GHz with Turbo up to 3.3GHz

¢ 1 virtual CPU. CPU is given with a burstable performance, i.e. 6 CPU
credits are given per hour, so in idle times they accrue and during
heavy workload a CPU Turbo with more dedicated CPU is provided.

¢ 1 GiB memory
¢ 30 GB SSD-backed storage

¢ Red Hat Enterprise Linux, 64bit

As our implementation uses Java 8, we do need a JRE with support for
that, as opposed to non-replicated BaseX which does use Java 7. We use
Oracle Java 8 Update 20.

3.2 TRANSACTION LATENCY

One of our main design goals was that we do not want to negatively im-
pact performance, i.e. increasing the time until a transaction is committed
should be avoided. The time between submitting a transaction and get-
ting a result back is called transaction latency. As XMark provides no test
queries for XQuery update, we came up with the following four queries to
test transaction latency:

Q1: replace node /site/regions/africa/item[@id = "item0"]/quantity
with <quantity>2</quantity>

Q2: for \$item in /site/*/* return insert node attribute {’test’}
{5} into \$item

QQ3: delete node /site/people/person/profile/interest

Q4: for \$item in /site/people/person/name return replace value of

node \$item with ’Max Mustermann’

Query Q1 replaces a single element, so it represents a small update op-
eration in comparison to the complete document. Query Q2 inserts a text
attribute into each element. Therefore, this is a much more costly operation
as many elements are affected. However, in terms of our replication system
it should not make a difference, because both cases require to transmit the

53

3.2 TRANSACTION LATENCY

whole document, regardless of the percentage of the affected nodes. Q3
deletes certain elements and Q4 replaces the value of each <name/> element
with Max Mustermann. The queries are intended to show a broad variety of
different update operations with a different percentage of affected nodes in
the data set.

The test is done using the traditional Client/Server infrastructure of Ba-
seX 7.8.2 as comparison and the new replication architecture, with 2, 3, 5
and 10 members. Each members runs on a separate Amazon EC2 instance,
all located in the EU region (Ireland). A distributor is running on a separate
instance as well. We use the XMark data set with scale factor 1, so the input
document is circa 112MB in size. The execution times for the four queries
can be seen in Figure 3.2.

== Q1 ——Q2 Q3 ——0Q4
10000
: . r. . —N
1000
A A A A ;
@
g
£ 100
B
o
=
I
=
=
2
8 10
g
=
£
1 g —— & = L a
0.1
Client/Server 2 Members 3 Members 5 Members 10 Members

replica set size

Figure 3.2: The transaction latency is shown for the Client/Server architecture and
the replication architecture with 2, 3, 5 or 10 members. The y axis shows the query
execution times for the four queries in milliseconds.

It is clearly visible that the queries have a quite distinctive runtime from
each other, but all behave the same in terms of replication; the replication
and the number of members within the replica set seem to have no signifi-
cant affect on the transaction latency.

54

3.3 REPLICATION LATENCY

3.3 REPLICATION LATENCY

As we use a lazy replication approach, a query is committed before the
updated data is replicated to the secondaries. Therefore, it is interesting to
know how long it takes for an update to actually be applied on a secondary.
We call the time between committing an updating query on the primary
and the data being applied on a secondary replication latency.

We tested this on three different data sets, using the scaling factors o.01,
0.1 and 1. We created a forth data set, again with scaling factor 1, but this
time with a split count of 500, resulting in splitting up the data set in 138
individual files, ranging from 103KB to 1.4MB in size. We used a replica
set with 3 members, so 2 secondaries. We measured the replication latency
to both secondaries and took the average as measured data. All members
are again located on separate EC2 instances, with a distributor located on a
forth instance. All instances are in the EU region (Ireland). The results are
shown in Figure 3.3.

5000
= Q1
4500 - 5 Q2

4000 ~ Q3

3500 Q4

3000

2500

2000

1500

1000

500

o mm W L]

1.2 MB 12 MB 112 MB 112 MB split
data set sizes

replication latency in ms

Figure 3.3: The replication latency is shown for the XMark data set with scaling
factor 0.01, 0.1, 1 and 1 with a split count of 500. The measured time in millisec-
onds is the average time it took to apply the update for the four queries on the
secondaries.

From the results we can draw several conclusions. First, if the docu-
ment size increases, the replication latency increases linearly. Secondly,
all queries on non-split data set have roughly the same replication latency.
Both of this observations fit our model, which replicates complete docu-
ments.

The split document now shows the importance on how to model the data
for this replication model. For queries Q1 and Q3 the replication latency

55

3.4 LEADER ELECTION PERFORMANCE

is minimal, as now only a single document has to be serialized and trans-
mitted to the secondaries. Q2 still has roughly the same replication latency
as without splitting the data, as almost all documents have to be updated.
The updates of Qg affect a small portion of the documents, therefore much
less data has to be transmitted.

It is quite obvious from this data, that a favorable data structure for our
replication architecture is to have a collection of many small documents
instead of one single big one. This fits well with many XML applications,
as mostly a large number of small files are handled.

3.4 LEADER ELECTION PERFORMANCE

The primary within a replica set is the only member accepting updating
operations. It is automatically elected using the leader algorithm described
in Section 2.5. As we use a single primary (and therefore a possible single
point of failure) we want to mitigate this by assuring that a new leader is
promptly elected if the current primary fails or steps down.

9
=8 FEU region

8 - —#—Globally Distributed

7
® 6
g
2 5
=
g 4 £
= 4
2
g 3
Q

2

1

0

3 Members 5 Members 10 Members

replica set size

Figure 3.4: Two replica sets with different member regions are measured for their
election time of a new leader.

Therefore, we measured the time it takes to elect a new leader. Our
primary steps down voluntarily, because otherwise the uncertainty of the
failure detection would also have to be taken into account and distort the
result. We used a replica set with 3, 5 and 10 members, respectively. We
tested this on two different member instances, both are based on Amazon

56

3.4 LEADER ELECTION PERFORMANCE

EC2. In the first case, all members are again located in the EU (Ireland)
region. In the second test case, the members are distributed world wide; 3
members are located in EU (Ireland), US West (Oregon) and Asia Pacific
(Tokyo) respectively. The 5 members replica set is also located in Asia
Pacific (Sydney) and South America (Sdo Paulo). The 10 member replica set
has the same regions as the 5 member replica set, but each region houses
two members.

We measured the time between the stepping-down of the former primary
and until the primary is announced and fully functional again. The results
are shown in Figure 3.4.

The data indicates that the election time increases linearly with the
amount of members in the set, which is what we expected. It also shows
that the difference between the locally deployed and the globally dis-
tributed replica set is rather small, i.e. a globally distributed replication
seems quite feasible. This can have many scenarios, ranging from catas-
trophic failover management for outages of whole data-centers or regions,
to moving data closer to the users and thereby reducing latency.

57

CONCLUSION

In this thesis, we presented several possible replication management strate-
gies. Based on their provided properties and our design targets for repli-
cation in BaseX, mainly providing high availability and a high transaction
latency, we choose an appropriate architecture. We decided to use a lazy
primary copy approach, where a distinguished member of a replica set is
responsible for all updating operations and updates are propagated after
they were committed.

Other than the update management strategy, such a system consists of
several importants components. We discussed security and showed how
we can securely authenticate a user using SCRAM.

When a member of the replica set fails, we can detect this using a prob-
abilistic accrual failure detector, which provides the possibility to detect
failures in miscellaneous network settings with a low false positive rate.
Therefore, a user can set appropriate suspicion level thresholds, to allow
for different network latency.

We also discussed leader election algorithms to elect a primary within
our replica system. As our primary is the only member accepting updates,
it is crucial that this election is done promptly to avoid downtimes. We
presented the bully algorithm and a modified version of the bully algo-
rithm and presented our own modification, to allow for different message
delivery guarantees and restricting to a limited eligibility of members.

We measured the performance of our system and can conclude that the
system performs well in many scenarios. The transaction latency is ba-
sically identical to the Client/Server architecture, but offers the extended
service level of high availability. The transaction latency is good for systems
with small updating documents, which ensures that clients can see a reason-
able recent version of the data when reading data items from secondaries.
The used election algorithm provides a fast election of a new primary, so
that the amount of time a replica set is in read-only mode is minimized.

58

CONCLUSION

As the problem itself is open-ended, i.e. improvements can nearly always
be made by modifying the replication to different design goals, many pos-
sible future problems present themselves. We already begun implementing
an approach where only the AUC is replicated instead of complete doc-
uments. Also, a freshness constraint on the replicated data on the secon-
daries might be useful for many applications. It might also be beneficial to
provide additional update management strategies, e.g. an eager replication,
for different application requirements.

So while there is still room for improvement, we presented an adaptable
and reliable architecture for a replication system within BaseX. It performs
well in many use cases and allows BaseX to offer an additional service level.

59

ACKNOWLEDGEMENTS

I would like to thank the whole BaseX team for providing me the oppor-
tunity to not only work academically on BaseX, but to also work with the
product in real-world projects, incorporating interesting technologies and
encountering challenging projects. A special thanks goes to Dr. Christian
Griin who mentored this thesis and is always readily available for fruitful
discussions and important insights.

I am also very grateful that Prof. Dr. Marc H. Scholl and Prof. Dr. Marcel
Waldvogel agreed to serve as referees for this thesis.

BIBLIOGRAPHY

[03]
[13]

[14a]

[14b]

[BBG+95]

[BEG+06]

[BG83]

[Bla1o]

[Breoo]

[Bre1z2]

[BSW79]

DB2 Replication Guide and Reference, 2003.

MarkLogic Server, Database replication guide, 2013. [Online].
Available: https://docs.marklogic.com/guide/database-
replication.pdf (visited on 08/01/2014).

eXist-db Replication and Messaging, 2014. [Online]. Available:
http://exist-db.org/exist/apps/doc/replication.xml
(visited on 08/24/2014).

MongoDB Replication Concepts, 2014. [Online]. Available:
http://docs . mongodb . org /manual / core /replication/
(visited on 08/10/2014).

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil, “A critique of ansi sql isolation levels,” in ACM
SIGMOD Record, ACM, vol. 24, 1995, pp. 1-10.

P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and
P. Tamma, “Relaxed-currency serializability for middle-tier
caching and replication,” in Proceedings of the 2006 ACM SIG-
MOD international conference on Management of data, ACM,
2006, pp. 599—610.

P. A. Bernstein and N. Goodman, “The failure and recovery
problem for replicated databases,” in Proceedings of the second
annual ACM symposium on Principles of distributed computing,
ACM, 1983, pp. 114-122.

B. Black, Introduction to Cassandra: Replication and Consistency,
2010.

E. A. Brewer, “Towards robust distributed systems,” in Princi-
ples of Distributed Computing, (Invited Talk), Portland, Oregon,
Jul. 2000.

E. Brewer, “CAP twelve years later: How the"rules"have
changed,” Computer, vol. 45, no. 2, pp. 23—29, 2012.

P. A. Bernstein, D. W. Shipman, and W. S. Wong, “Formal
aspects of serializability in database concurrency control,”
Software Engineering, IEEE Transactions on, no. 3, pp. 203—216,

1979.

ii

https://docs.marklogic.com/guide/database-replication.pdf
https://docs.marklogic.com/guide/database-replication.pdf
http://exist-db.org/exist/apps/doc/replication.xml
http://docs.mongodb.org/manual/core/replication/

BIBLIOGRAPHY

[CTo6]

[Era13]

[Gar82]

[GFo3]

[GHOSg6]

[Grii10]

[HDYKo4]

[KCKo7]

[Kir13]

[KKLKo9]

[LKPJos]

T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” Journal of the ACM (JACM), vol.

43, NO. 2, pp. 225-267, 1996.
J. Erat, “Fine granular locking in xml databases,” Bachelor

thesis, University of Konstanz, 2013. DOL: urn:nbn:de:bsz:
352-235049.

H. Garcia-Molina, “Elections in a distributed computing sys-
tem,” Computers, IEEE Transactions on, vol. 100, no. 1, pp. 48—

59, 1982.
J. Garmany and R. Freeman, Oracle Replication: Snapshot,

Multi-master & Materialized Views Scripts (Oracle In-Focus).
Rampant TechPress, 2003.

J. Gray, P. Helland, P. O'Neil, and D. Shasha, “The dangers of
replication and a solution,” in ACM SIGMOD Record, ACM,

vol. 25, 1996, pp. 173-182.

C. Griin, “Storing and querying large xml instances,” PhD
thesis, University of Konstanz, 2010. DOI: urn:nbn:de:bsz:
352-opus-127142.

N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The
¢ accrual failure detector,” in Reliable Distributed Systems,
2004. Proceedings of the 23rd IEEE International Symposium on,
IEEE, 2004, pp. 66—78.

J. Klensin, R. Catoe, and P. Krumviede, “IMAP /POP AUTHo-
rize Extension for Simple Challenge/Response,” RFC 2195,
September, Tech. Rep., 1997.

L. Kircher, “Polishing Structural Bulk Updates in a Native
XML Database,” Master thesis, University of Konstanz, 2013.
DOI: urn:nbn:de:bsz:352-154882.

A. Krug, D.-M. U. Kronert, D.-D. M. Lorzer, and K. Kiispert,
Untersuchung verschiedener Replikationsverfahren unter IBM
DB2 LUW am konkreten Beispiel der Digitalen Bibliothek der
Friedrich-Schiller-Universitit Jena und des Freistaates Thiiringen,
2009.

Y. Lin, B. Kemme, M. Patifio-Martinez, and R. Jimenez-Peris,
“Middleware based data replication providing snapshot iso-
lation,” in Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, ACM, 2005, pp. 419—430.

iii

http://dx.doi.org/urn:nbn:de:bsz:352-235049
http://dx.doi.org/urn:nbn:de:bsz:352-235049
http://dx.doi.org/urn:nbn:de:bsz:352-opus-127142
http://dx.doi.org/urn:nbn:de:bsz:352-opus-127142
http://dx.doi.org/urn:nbn:de:bsz:352-154882

BIBLIOGRAPHY

[MMMog]

[Nero8]

[NMMW?10]

[OV11]

[Ret12]

[SPTUo7y]

[SWK+02]

[Wei1o]

[WYos]

Q. E. K. Mamun, S. M. Masum, and M. A. R. Mustafa, “Mod-
ified bully algorithm for electing coordinator in distributed
systems.,” WSEAS Transactions on Computers, vol. 3, no. 4,

PP 948-953, 2004.
L. Nerenberg, “The CRAM-MDs5 SASL Mechanism,” SASL
Working Group, July, Tech. Rep., 2008.

C. Newman, A. Menon-Sen, A. Melnikov, and N. Williams,
“Salted Challenge Response Authentication Mechanism
(SCRAM),” RFC 5802, Tech. Rep., Jul. 2010.

T. Ozsu and P. Valduriez, Principles of Distributed Database Sys-
tems, ser. Computer science. Springer, 2011.

A. Retter, “Restful xquery - standardised xquery 3.0 anno-
tations for rest,” 2012. [Online]. Available: http : / / wuw .
adamretter . org . uk / papers / restful - xquery _ january -
2012.pdf.

B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer, “A
new adaptive accrual failure detector for dependable dis-
tributed systems,” in Proceedings of the 2007 ACM symposium
on Applied computing, ACM, 2007, pp. 551-555.

A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu,
and R. Busse, “Xmark: a benchmark for xml data manage-
ment,” in Proceedings of the 28th international conference on Very
Large Data Bases, VLDB Endowment, 2002, pp. 974—985.

A. Weiler, “Client-/Server-Architektur in XML Datenbanken,”
Master thesis, University of Konstanz, 2010. DOI: urn : nbn :
de:bsz:352-opus-123668.

X. Wang and H. Yu, “How to break mds and other hash
functions,” in Advances in Cryptology—-EUROCRYPT 2005,

Springer, 2005, pp. 19-35.

iv

http://www.adamretter.org.uk/papers/restful-xquery_january-2012.pdf
http://www.adamretter.org.uk/papers/restful-xquery_january-2012.pdf
http://www.adamretter.org.uk/papers/restful-xquery_january-2012.pdf
http://dx.doi.org/urn:nbn:de:bsz:352-opus-123668
http://dx.doi.org/urn:nbn:de:bsz:352-opus-123668

LIST OF FIGURES

Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6
Figure 2.7

Figure 2.8
Figure 2.9

Figure 2.10

Two-phase locking graph.
Several databases compared to their replication up-
date locations and propagation strategies.
Four distinct categories of update management
strategies for a replication system, differentiated by
the update location and the update propagation. . . .
Replica set architecture with three members. There
is one primary within a replica set with all other
members being Secondaries. All members are con-
nected through heartbeats. A distributor is always
connected to a primary and if needed by a client
connection can also send queries to Secondaries. All
clients connect through a distributor with the replica

Member states with all possible transitions. The di-
rection of an arrow indicates whether a transition in
this direction is possible. The black continuous line
indicate a normal transition. The red dashed lines
represent a failure transition. The black dotted line
is a failurerecovery.

Authentication by the Client/Server infrastructure
using a modified version of CRAM-MDs.
SCRAM message exchange.
Comparison of different query modes for a client
connection to determine the executing replication
member. Lo
A read-only query is sent to the distributor. Based
on the query mode it will be distributed to a certain
member within the replica set. The member will ex-

14

18
19

21
22

ecute the query and return the result back to the client. 26

List of Figures

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 3.1

Figure 3.2

Figure 3.3

After an updating query is executed at a primary, the
result is immediately sent back to the client. Dur-
ing execution, a list of affected document as created.
This list is used to serialize all affected documents
and these documents will be sent to the Secondaries. 27
A primary sends heartbeats to all Secondaries. If
a secondary suspects a primary to have failed due
to non-arriving heartbeats, it notifies all Secondaries
within the set. If any secondary gets a majority of
such messages, an election is initiated. When the
new primary is elected it will notify all distributors

of the new replica set topology. 38
Bully protocol execution for an election with five
processes. ps is currently not available. 42

Modified bully protocol execution for an election
with five processes. ps is currently not available.
Note that the first two phases are identical to the
original bully algorithm. 44
Modified bully protocol with unreliable delivery
guarantees and timestamp eligibility execution for
an election with five processes. Each circle rep-
resents a process, whereby the upper half is the
process name with the process number as index and
the lower half is the most recent update timestamp.
ps just failed, therefore a new leader has to be elected. 49
Comparison of replication types and provided levels
of consistency of several popular DBMS. 50
Scaling factors for XMark data and the resulting doc-
ument size and number of elements and attributes
combined. L L 52
The transaction latency is shown for the Clien-
t/Server architecture and the replication architec-
ture with 2, 3, 5 or 10 members. The y axis shows
the query execution times for the four queries in
milliseconds. oo 54
The replication latency is shown for the XMark data
set with scaling factor 0.01, 0.1, 1 and 1 with a split
count of 500. The measured time in milliseconds is
the average time it took to apply the update for the
four queries on the secondaries. 55

Vi

List of Figures

Figure 3.4 Two replica sets with different member regions are
measured for their election time of a new leader. . . . 56

vii

LIST OF ALGORITHMS

Algorithm 2.1
Algorithm 2.2
Algorithm 2.3
Algorithm 2.4

Algorithm 2.5

Algorithm 2.6

CDF estimation accrual failure detector
Bully election algorithm
Modified bully election algorithm
Phase 1 of the modified bully algorithm with unreli-
able delivery guarantees and timestamp eligibility. . .
Phase 2 of the modified bully algorithm with unreli-
able delivery guarantees and timestamp eligibility. . .
Phase 3 of the modified bully algorithm with unreli-
able delivery guarantees and timestamp eligibility. . .

viii

	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Overview

	2 Replication
	2.1 Preliminaries
	2.1.1 Design Goals
	2.1.2 Consistency

	2.2 Update Management Strategies
	2.2.1 Eager Primary Copy
	2.2.2 Eager Update Anywhere
	2.2.3 Lazy Primary Copy
	2.2.4 Lazy Update Anywhere

	2.3 Replica set in BaseX
	2.3.1 Architecture
	2.3.2 Client connection
	2.3.3 Replication workflow

	2.4 Failover handling
	2.4.1 Failure detector
	2.4.2 Failover management

	2.5 Leader Election
	2.5.1 Problem definition
	2.5.2 Bully algorithm
	2.5.3 Modified Bully algorithm
	2.5.4 Modified Bully algorithm with unreliable delivery guarantees and limited eligibility

	2.6 Related Work

	3 Performance
	3.1 Test environment
	3.2 Transaction latency
	3.3 Replication latency
	3.4 Leader election performance

	4 Conclusion
	Bibliography
	List of figures
	List of algorithms

