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Abstract

Geospatial information has been growing rapidly and has been used in variety of
applications such as Geographic Information Systems, bioinformatics, and decision
support systems. Variety of applications have demanded efficient approaches of data
manipulation to cover their requirements. The XML-based data representation and
manipulation in this field is one of these approaches that also has been considered
and applied by databases, especially native XML databases.

This work tries to investigate the challenges of geospatial data processing in
BaseX [26], an open-source native XML database, by discussing the issues in geo-
spatial querying, geospatial functionality, and query efficiency. At first, this thesis
starts with introducing a number of indexing approaches as various ways of effi-
cient geospatial data manipulation. Next, general geospatial functionality in some
similar databases are investigated. Then, the geospatial features for Geography
Markup Language (GML) [23] data representation are added to BaseX, using the
Java Topology Suite (JTS) library [66] and based on the EXPath specification.

To improve the performance of spatial queries, an indexing structure is applied
as an external library. At the end, we have tried another querying approach by con-
necting to MongoDB, a powerful document-based database system, through BaseX
as an effort to find other efficient ways. Evaluations in various stages and provided
advantages and disadvantages of different approaches can be considered in deciding
on future developments in BaseX.
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1 Introduction

Geospatial data supports a wide range of ever-expanding applications in various
scientific, governmental, business, and industrial areas such as geoscience, energy
exploration, natural resource management, disaster management, transportation en-
gineering, and urban planning. Numerous researches and efforts have been dedicated
to make the most efficient use of this data, either in representation or manipula-
tion. XML-based structures are part of the widely-used standards to represent the
complex structure of geospatial data. Geographic Information Systems (GIS) [31],
traditional databases, and other systems have been developed or adopted to handle
this type of data format. Native XML database is also another approach introduced
in recent years to fulfill the geospatial requirements. This requires adding geospatial
functionality as a starting point.

Our contribution is to add geospatial functionality to BaseX with the support
of GML as a geospatial data format. To do the spatial operations on GML, exist-
ing open-source libraries are applied. The big challenge of implementation is the
effectiveness of operations since geospatial data is often huge in size and complex
in structure. Hence, performance improvement of data retrieval from such a data
structure needs special efforts.

Spatial indexing structures are common solutions to improve query performance
according to specific constraints and properties of spatial data. As various spatial
index algorithms consider different requirements, choosing a proper index should
be based on our individual system properties. We have followed this purpose first
through a short study over a huge set of indexing structures. Since the number of
indexing structures are large, we have selected the structures among the most widely
accepted ones in the literature. The goal of this study is to add a new source of
discussion for these structures that helps to understand them more effectively for
further developments in BaseX. However there are other efforts discussing the index
structures, here we provide a comprehensible explanation and different perspectives,
which are collected from various sources. To give a quick and efficient overview over
these structures, we add a short summary explaining the indexing structures, ad-
vantages, and disadvantages. This summary helps to decide the optimum structure
for our approach.

Then, an overview of the geospatial features in similar database systems is pro-
vided. Since the database systems with geospatial functionality are practical sam-
ples, this overview can help us to gain an insight into the different ways of imple-
mentation. In this part, we explain how the geospatial functionality is provided in
each database. Furthermore, the indexing structures together with different abilities
supplied by each of these databases are discussed briefly.

In the next steps, we develop the Geo Module together with an indexing struc-
ture in BaseX. Evaluation of this module using the real-world data comes hereafter
to demonstrate the efficiency of implementation. As an experimental way towards
more effective geospatial features, we provide a driver to connect to the well-known
document-based database MongoDB. Through this connection, the queries that are
written in BaseX, are executed in MongoDB and then the results are accessible via
BaseX. This approach can benefit from the spatial index structure and other spatial
functionality of MongoDB. We compare the query time and indexing via this con-
nection with the direct query on BaseX. These results and evaluations are the basis
for further investigations and developments in BaseX.



This thesis is structured as follows. We first start with the definitions of concepts
needed later in the discussions in Section 2. In addition, a number of spatial index-
ing structures are introduced in this section. Then, Section 3 explains related works
in various areas in geospatial processing. The implementation of the Geo Module
in BaseX is described in Section 4. Towards more efficient ways, an approach is
experienced by connecting to MongoDB which is evaluated in Section 5. At the
end, ideas for further works are summarized in Section 6.



2 Geospatial Data Processing

According to Collins dictionary, the word geospatial is an adjective relating to a
position of things on the earth’s surface and geospatial data is the data represent-
ing any thing on the earth’s surface. Regarding the importance of geospatial data,
many standards and systems have been developed during the years to manipulate,
represent and make use of them. Countries and organizations are using different
systems and standards to represent geospatial data and consequently there are nu-
merous systems to fulfill a range of requirements. A an example, the World Geodesic
System (WGS) is one of these systems that is commonly used all around the world.
WGS84 is the latest version of this standard, which was introduced in 1984 and
is widely used for expressing the locations on the earth in wide range of services,
including satellite services, notably Global Positioning System (GPS), and Google
Maps which employ this system as a reference.

In this section, we mainly explain some existing geospatial indexing structures as
the most critical part of geospatial data processing in database systems. After some
basic definitions in Section 2.1, geospatial data processing in XML [14] databases is
shortly discussed in Section 2.2. Finally, a set of geospatial indexing algorithms are
introduced in Section 2.3.

2.1 Terms and Definitions

Geospatial data is the location’s information describing features and locations as
well as their characteristics which have a spatial component to connect them to a
place on the earth, such as countries, cities, buildings, roads, and rivers. Here, a
feature represents a physical entity, e.g., a structure, a lake, a tree, or a shape. In
fact, it is an abstraction of real-world phenomenons, such as geometries, attributes,
and relationships. Hence, real-world entities could be expressed as a set of features.
Geospatial data also applies to three-dimensional data, like above and below the
earth’s surface [55]. Quite often, this information is described in a multi-layer hi-
erarchy. Geospatial objects and entities are formulated through different encodings
and formats, which are developed in regards to the specific requirements. An or-
dered set of numbers, called coordinates, identifies the position of objects defined in
a specific coordinate system.

A coordinate system as a basic concept is a method to uniquely determine the
position of an object in a space of a given dimension. Using particular definitions,
components, and properties, a coordinate system determines the coordinates which
specify the linear and angular position of entities. Coordinate systems are defined
by various organization, countries, or governments based on some parameters, which
we discuss them in the following.

A country may have more than one coordinate system for its national-wide geo-
graphic data. As an instance, all three systems DHDN', ETRS89 UTM zone 32N,
and PD/83 Zone 3 are examples of Germany’s coordinate systems. These systems
are considered as local or regional ones, while there are global coordinate systems
to give features of the world unique coordinates and specifications, like the WGS
system. The coordinates of a feature or an object may differ from one system to
another. As an example, the coordinates of Berlin in the WGS84 coordinate system
with longitude and latitude is (52.520007,13.404954) while in Germany’s ETRS89
UTM zone 32N coordinate system, it is (32798809.64, 5828000.49). Accordingly, it
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Figure 1: Projection of a geographic coordinate system to a 2D flat map (source [32])

is necessary to know, how the coordinate systems are related in concepts and defini-
tions to make the conversion from one system to another possible. The conversion
is required when we need to move data between coordinate systems.

In geographic information systems (GIS), coordinate systems are categorized in
two major and common types:

e Global or spherical coordinate system

Also referred as geographic coordinate system, represents the data on the earth
in a 3D spherical surface by longitudes and latitudes. Points are referenced
by their longitude and latitude values which are angles measured often in
degrees (or in grads) from the earth’s center to a point on the earth’s surface.
Sometimes it is useful to associate longitude and latitude values with x and
y axis respectively. WGS84, NAD? 1927, and NAD 1983 are examples of
geographic coordinate systems.

e Projected coordinate system

This coordinate system represents the earth’s round surface on a 2D flat sur-
face, based on a map projection as shown in Figure 1. In fact, a projected
coordinate system is always based on a geographic coordinate system on the
earth and the word “projected” refers to the projection of data on spherical
the earth to a flat space, called map projection. Points in such system are lo-
cated by x and y values on a grid. In some references, this coordinate system
is also called the raw coordinate system.

To define a coordinate system, some parameters should be considered, such as
the measurement framework (geographic or planimetric), the unit of measurement
(e.g., meter for the projected coordinate systems and decimal degrees for geographic
coordinate systems), and the projection definition for the projected coordinate sys-
tem.

In order to express the geospatial data by coordinate systems, various encodings
have been developed by Open Geospatial Consortium (OGC) [16], following different
goals. OGC as an international consortium is the main reference to develop interface
standards for geospatial content, services, data exchange, data communication, and
data processing. Here, we introduce only a short list of common data representation
standards which are related to our study.

2North American Datum



e Geography Markup Language (GML): The XML-based standard encoding de-
fined by OGC that serves as a modeling language to express geographical
features in both spatial and non-spatial characteristic. It is used as an inter-
change format in Internet data storage, exchange, transport, and transaction.
The key to the effectiveness of GML is its capability to integrate all forms of
geographic information. The previous versions of GML, namely before ver-
sion 3.0, encode a set of 2D geometries, i.e., Point, LineString, and Polygon.
GML 3.0 introduces Curve and Surface as new geometries, plus the support
of geometries in 3D.

e Keyhole Markup Language (KML) [51]: An XML-based grammar to encode
and represent the geographic data in an 3D earth viewer such as Google Earth,
also on a 2D map like Google Maps. KML has been adopted as an inter-
national standard by OGC. The 3D geographic coordinates for each place are
represented with longitude, latitude, and if available altitude. Coordinates
are provided using the plain unprojected WGS84 longitude and latitude. The
altitude could be omitted and assumed as 0. KML mainly focuses on visual-

izations and expresses what and how to show the data. Code 1 shows a sample
data in KML.

Code 1: A simple KML example representing a Point

<?xml version="1.0" encoding="UTF-8"7>

<kml| xmlns="http://www.opengis.net/kml/2.2">

<Document>

<Placemark>
<name>New York City</name>
<description>New York City</description>
<Point>

<coordinates>—74.006393,40.714172,0</coordinates>

</Point>

</Placemark>

</Document>

</kml>

e Well-known Text (WKT): A text-based markup language to represent the
vector geometries which supports a big range of objects like Geometry, Point,
LineString, Curve, Polygon, Surface, curvePolygon, and multi-part geometries
such as MultiPoint, MultiCurve, MultiSurface. Below are examples of Point,
LineString, and Polygon represented in WKT:

— Point: POINT (1 2)
~ LineString: LINESTRING (3 1, 13, 4 4)
— Polygon: POLYGON ((31,44,54,12,31),(23,33,32,23))

e Well-known Binary (WKB): The binary representation of WKT data to be
used in a database system.

e GeoJSON [17]: A geospatial data encoding based on the JavaScript Object
Notation (JSON). An object is represented by a set of name/value pairs. The
whole data is encoded as text and no advanced numeric data types are em-
ployed. It is mainly used as a lightweight text format for data exchange. The



default coordinate system in this standard is WGS84, however other systems
could be defined. A sample point in GeoJSON is provided in Code 2:

Code 2: A simple GeoJSON example representing a Point

“type”: "Point”
"coordinates”: [30, 10]

2.2 Geospatial Data in Native XML Databases

As a powerful platform-independent XML grammar introduced by the GIS commu-
nity (OGC), GML plays an important role in spatial data modeling, integration,
sharing, transmission, and exchange because of its flexibility in application schema,
self-descriptive format, and rich data expression. Considering the XML-based struc-
ture of GML, it could be embedded and queried anywhere in the document, and be
mixed with any other type of XML, images, and etc.

In addition to the general functions and features on the structure of GML
data, geospatial concepts and requirements could be included in the native XML
databases. To start with, the GML elements should be read and treated as geo-
metries. Therefore, the string information is not enough to satisfy the geospatial
features. The positions, locations, and relations between an arbitrary set of geo-
metries raise some requirements regarding to the topics and definitions in related
scientific fields like Geometry and Geoscience. For instance, “What is the distance
between two geometries?” or “Which geometries intersect a particular geometry?”
are examples of such requirements. Furthermore, there are features related to single
geometries, such as the length and area of a geometry, the number of interior rings
of a polygon, and the starting point of a line. These features can be provided as
XQuery functions by a database system or XQuery processor and be mixed with
standard XQuery, full-text, and other functions. To this date, numerous ideas have
been introduced for geospatial functionality as well as indexing. Here, we discuss
some geospatial index structures and then we will have a look at some sample im-
plementations in Section 3.3.

2.3 Geospatial Indexing

According to the survey of Chin et al. [19], indexing has dramatic influences on data
manipulation and storage. Conventional index types are not suitable for supporting
geospatial data, since it is very large and complex in structure and relations. Be-
sides, the spatial queries differ from non-spatial queries in several important ways.
For example, spatial queries include geometry data types and consider the spatial re-
lationships, e.g. containment, between the geometries. Additionally, the operators
used for geospatial data retrieval are complicated and spatial orderings would be
hard to define. An important reason which makes the traditional indices not appro-
priate is that indexing strategies will consider the spatial objects in one dimension
and do not preserve the spatial proximity.

In order to fulfill the geospatial specialty and improve the data retrieval, a large
number of spatial indexes has been introduced. The strength or weakness of an in-
dexing approach mostly depends on the requirements, query types, and applications
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Figure 2: An overview of some important indexing structures developed over the
years (created based on the ideas mainly from [19])

for which it is developed. The high percentage of these structures is based on the
divide and conquer algorithm [1]. In general, Chin et al. [19] have categorized all
approaches to three different abstract classes:

e Object Mapping: Given a k-dimensional polygon with n nodes, these ap-
proaches map this shape to a kn-dimensional or try to look at the shape of
polygon as a single object in the original k-dimensional polygon.

e Object Duplication: These approaches keep different instances of an object
in different spaces with the similar representations to take advantage of the
properties of all these spaces.

e Object Bounding: Similar to the idea of Quad-tree [25] and Marching cube [45]
(an approach in Computer Graphics), these approaches enclose the polygon
as accurate as possible by dividing the space in different ways.

On the other hand, the index structures are mostly based on well-known tree
structures, like Binary-tree [38], B-tree [6], and Quad-tree. To see how different
approaches are developed based on these data structures, here we cover just a selec-
tive list of them. Figure 2 visualizes the relation of some indexing structures, which
were developed over the years. An arrow from structure A to B means that B is
an extension of A. The colored circles also show the main categories of these trees.
In the upcoming sections, these structures are briefly explained: Binary-tree based
in Section 2.3.1, B-tree based in Section 2.3.2, and Quad-tree in Section 2.3.3 from
the space filling index structures.
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Figure 3: A representation of the KD-tree

2.3.1 Binary-Tree Based

The indexes in this group are conceptually derived from the binary search tree by
adopting and generalizing the idea of space partitioning. The KD-tree was the very
first indexing structure of this kind introduced by Bentley [11]. It is a generalization
of the binary tree structure for organizing k-dimensional points. The basic idea for
a 2D example is to alternatively split the area by x- and y-coordinate, such that at
each level the points are split half in left, half in right and half below, half above,
respectively. Generally, for every non-leaf nodes in the same level, there is a k-th
dimension discriminator that defines the dimension along which the areas must be
split to form the left and right subtrees. The split has to result in two subspaces,
such that the points in the left or below subspace have smaller value in the dimension
which split happens, e.g., X, than the parent node. In the same dimension, all nodes
in the right or above subspaces have greater values. More clearly, if the discriminator
for a node is associated to the i-th dimension, after splitting a space along the i-
dimension all i-th attribute of the left subtrees nodes have smaller value than the
i-th attribute of this node and all the right subtree nodes have the greater i-th
attribute.

Figure 3 shows the representation of some sample data and the corresponding
KD-tree. As can be seen, according to the discriminator x in the first level, nodes
B, C, D in the left subtree of A have a smaller x value and nodes E, F' in the right
subtree have a greater x value. In the next level that the discriminator is y, the same
consequently happens for y values. For example, node C', which is in the subspace
half below B, has a smaller y value.

The KD-tree as an important search structure, has been widely used and stud-
ied [61]. With a simple implementation, it works effectively for range queries since
they are formed by splitting the space by planes orthogonal to axis. The balanced
KD-tree is also effective in searching the Nearest Neighbour in 2D which plays crit-
ical roles in database retrievals, classification problems, and clustering problems
together with other range queries. However, some variants have been introduced
to allow for better performance in clustering, searching, storage efficiency, and bal-
ancing, especially in higher dimensions. We discuss some of these variants in the
following.

Non-homogeneous KD-tree. A complication arises when an item is deleted
from the KD-tree and a node from the subtrees must be replaced. This complication
comes from the discriminator in that level. After the deletion, either the node with
the smallest value in the right subtree should be replaced or the node with the
biggest value in the left subtree.

The Non-homogeneous KD-tree [10] was proposed to make the process of deletion
cheaper. The major alteration to build this structure is that the partitioning is not
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always on different dimensions cyclically. Instead, the dimension including more
range queries is selected to be the discriminator in each level. For example, if the
discriminator at the first level is x, at the second level it can be z again instead
of ¥ in a two-dimensional KD-tree. The partitioning in this tree can happen in an
arbitrary hyperplane like a line in 2D in contrast to KD-tree that a data point is
always chosen for partitioning. In this partitioning, almost-balanced subplanes are
desired.

KDB-tree. Another issue to be discussed here is storage efficiency of indexing.
Since the size of indexing can grow fast enough to fill a huge chunk of main memory,
most of the index structure must be stored necessarily on disk while being used.
To make efficient use of the secondary memory, the KDB-tree [56] is proposed to
provide the search efficiency of a balanced KD-tree together with the optimized
storage access taken from the B-tree. It partitions the areas similar to the KD-tree
and stores each node as a page similar to the B-tree. Pages exist in two types, region
and point pages. A region page as an internal node contains a description of the
bounding region enclosing its children and reference to the children. A point page
as a leaf node carries the object identifiers. Therefore, different pages are kept in
different parts of memory instead of a huge chunk.

As a property of the KDB-tree structure, the regions in every region page are
disjoint and their union is the parent region. Similarly, all points in a point page
as a child of a region are placed necessarily in that region. As shown in Figure 4,
D, E, F, and GG subspaces are disjoint and shape together the region A as the
parent node. Here, the black small points in the leaf nodes are representing the
points belonging to a page. Also, the hatched areas in each node are the regions
that are not included in the page of that node. As Robinson [56] states, the KDB-
tree represents a more efficient search structure for large multi-dimensional dynamic
structures with optimized storage utilization. It should be mentioned that there is
a trade-off between being height-balanced and storage efficiency. It means that the
storage efficiency can be even poorer in some cases.
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Figure 6: A representation of the HB-tree (source [44])

HB-tree. Splitting the region nodes is inevitable for keeping the balance of
KDB-tree during the modification processes. This splitting is done by intersecting
the data space with a plane. This intersection does not always cross the actual
borders of current subregions. Then, new subspaces would be produced. This means
that that splitting can propagate to the children, resulting in more and more sparse
nodes in lower levels. The HB-tree (holey brick B-tree) [44] as a multi-attribute
index structure is proposed to solve this problem. This structure allows data spaces
to be divided along more than one dimension such that rectangular regions inside
that space can be shaped, called holes. This gives more flexibility in partitioning
and serves as a solution for the cases in which partitioning a region along one entire
dimension forces splitting of the children subregion.

The HB-tree also helps to distribute the objects in subspaces more evenly when
it is not possible by cutting across one dimension. Figure 5 illustrates an example
at which partitioning along one dimension in 5(a) results in uneven division of data,
while two-dimensional split in 5(b) divides the objects more evenly.

To represent the holey regions, the HB-tree uses the KD-tree within internal
nodes to organize the information about the lower levels. It means that a more
complex data structure is required to represent a node. In addition, it might happen
that a region is referenced by more than one leaf of the KD-tree in internal nodes of
the HB-tree, such as node G in Figure 6. As it can be seen in this figure, splitting
along y on the third level results in dividing into two subtrees, one having 1/3 and
the other 2/3 of the nodes. To achieve this, the subtree with node x5 shows the split
along x in the next level and therefore duplicates GG in both right and left subtrees.
The subtrees with root nodes x1, x2, y3, and y5 are extracted to show F and C'
regions.

10



As Lomet and Salzberg [44] state, removing the sparse nodes of the KDB-tree
gives better search and insert performance and decent space utilization in the HB-
tree. Nevertheless, expensive deletion and splitting as a result of complex structure,
and multiple references to a data node that may lead to more than one traversal of
a path are the trade-off.

Matsuyama’s KD-tree. Since KD-trees are designed as a point access method,
the variant structure introduced by Matsuyama et al. [47] is suitable for non-point
objects via adding an extensive duplication strategy. In order to achieve this, a
data page is associated to each leaf node containing pointer to the objects. The
pointers refer to objects either totally or partially included in the data space. Those
objects that overlap several unpartitioned spaces will be referenced in all corre-
sponding pages. As a disadvantage, it should be mentioned that this structure is
not appropriate for data with large objects due to duplication.

4D-tree. Another extension of the KD-tree to make it useful for two-dimensional
rectangular objects is the 4D-tree [4]. This data structure maps objects into four-
dimensional points which are indexed in the KD-tree. It means that a rectangle
(x1,%1), (z2,y2) is considered as the point (x1,y1,xa,y2). Similar to the KD-tree,
the discriminator in each level is chosen repeatedly from the set (z1,y1, z2,y2). For
each node, a discriminator, a discriminator value, and pointers to two children are
stored. For a region search (qz1, qz2, qy1, qy2), depending on the discriminator, the
result of one of the following operators,

1 < qra, X2 2 qry, Y1 < qQY2, Yo = qU,

determines which subtree (or both) has to be searched. The major problem of this
approach is the high cost of its intersection search when the query needs propagating
in both subtrees.

SKD-tree. The Spatial KD-Tree (SKD-tree) [50] alters the KD-tree, such that
the object duplication and object mapping is avoided. Similar to the 4D-tree, it was
proposed to handle non-point spatial objects since they may extend in more than
one subspace in the KD-tree. To prevent those objects to be divided and referenced
multiple times, the SKD-tree defines a virtual subspace for each subspace produced
in the KD-tree. Each virtual subspace determines the bounding area of all objects
with the centroid inside the original subspaces. It means that even though an
object is not totally contained in the original subspace, it can be contained in the
corresponding virtual subspace. More clearly, the objects will be placed in subspaces
based on their centroid. Therefore, each node has the following parts [49],

e pointers to two children,
e the level discriminator,
e the level discriminator value, and

e the maximum and minimum values of the left and right subtree objects re-
spectively in the dimension that the level discriminator belongs to.

Figure 7 shows an example of a data set and the space partitioning together with
the corresponding SKD-tree. Figure 7(a) illustrates the way that minimum and
maximum boundaries of each space are determined to shape a virtual subspace. In
this example, the discriminator for the root node is x with the value of x4. The
maximum boundary of the rectangle r3 is x7, which defines the maximum boundary
of the left virtual subspace. Correspondingly, the minimum boundary of the right
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Figure 7: An example of the SKD-tree structure (source [19])

subspace is x5, which is the right boundary of rectangle rg. Figure 7(b) shows the
tree directory of this sample data. The SKD-tree is at the advantage when the
virtual subspace may bound the objects tighter than the partitioning line. In such
cases, the intersection search cuts the search space efficiently. The containment
search is directly supported in this structure and is useful to operators, like within
and contain, since all objects, which are not contained totally in the query region,
are ignored. As the SKD-tree is memory-based, not disk-based, it is not suitable for
very large databases.

2.3.2 B-Tree Based Indexing Technique

The B-tree is used extensively in databases due to its flexibility and ability to handle
a large amount of data. However, it is not designed for data in multi-dimensional
spaces. Therefore, it is not suitable for spatial searches like other classical one-
dimensional index structures. Frequent queries in geospatial applications, such as
finding the all places within 20km of a point, make it important to find the objects
according to their spatial location in a space. Regarding the utility of B-tree, a
variety of index structures have been developed based on its structure and focusing
to meet the spatial requirements. In the following sections, we discuss some of these
structures.

R-tree. The R-tree [30], as one of the spatial indexing structures, extends the
B-tree by adding support for multi-dimensional data. It also inherits the height
balance from the B-tree. This structure is designed based on the idea of grouping
the neighbouring objects and representing them with their minimum bounding rect-
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Figure 9: Two different split strategies in the R-tree (created based on [30])

angle (MBR). The idea minimizes the visiting area in spatial queries. Shapes and
objects are described in leaf nodes by rectangles containing a single object. Each
non-leaf node in higher levels is the smallest bounding rectangle spatially containing
its children, either the rectangles or objects. The root node with at least two chil-
dren is the biggest minimum bounding rectangle, which spatially contains the whole
objects. Figure 8 depicts how an R-tree is built for a spatial data set. Figure 8(a)
illustrates the minimum bounding rectangles calculated for different levels and the
corresponding R-tree is shown in Figure 8(b). As this structure is designed for disk
storage, the leaf nodes in Figure 8(b) point to the data tuples on disk.

The operations on the R-tree are basically the same as in the B-tree. The only
difference is that the whole operations have to be done on bounding rectangles.
Also, the order used in the element placement in B-tree is the set inclusion order on
bounding rectangles and shapes in leaf nodes.

Partitioning the area with MBRs is the challenging point of the R-tree. Each
split algorithm, generates different partitions such that the R-tree structure may
differ for each of them. Since the rectangles are areas to be investigated in spa-
tial calculations, minimizing both their coverage area and overlapping is crucial to
its performance. Therefore, splittings should result in the minimum total area of
rectangles and minimum overlapping of each two rectangles. Achieving these goals
largely depends on the splitting algorithm chosen to define the bounding rectangles.
Figure 9 illustrates this point by two different splits. Total coverage area of the
“Bad split” case in this sample is larger than the “Good split” and this will lead to
unnecessary investigation of empty spaces.

As mentioned before, the idea of bounding rectangles helps to decide which
parts of the tree have to be visited in queries, such as intersection, overlapping, and
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containment. In fact, the following steps are taken to run such queries:
1. Filtering: This step selects those rectangles which overlap the query area.

2. Spatial Operation: The requested spatial operation is applied on the selected
rectangles from Step 1.

3. Step 2 continues until it reaches those rectangles containing single objects.
4. The selected objects are checked against the query operation.

Figure 10 depicts how an intersection query is done on the R-tree and how the
rectangles are chosen to be included in calculations. In this example, the rectangles
Ry, R5, Rg, Ri2, and Ry, are selected to be checked while the other areas remain
untouched. At the end R;» and Ry, are selected as rectangles containing the final
results.

The R-tree benefits from the highly balanced structure and organizes the data in
pages. This structure is designed for secondary storage and most of implementations
often keep the inner nodes in main memory while the leaves are loaded from disk.
It yields good performance in low-dimensional spaces. Generally, this structure is a
common indexing technique for efficient execution of multi-dimensional queries on
both point and extended spatial data. However, there are two main disadvantages
according to Manolopoulos et al. [46], which motivate to revise the structure to-
wards more efficient variations. First, point-location queries may lead to multiple
path navigation in the tree leading to declined performance, especially when over-
lapping areas of MBRs are considerable. Second, investigating empty spaces of large
rectangles which have significant overlaps, deteriorates the performance. Here, we
briefly explain some of the most important variations of the R-tree to see how they
alter the algorithm to circumvent the disadvantages. The improvements for R-trees
can be classified into two groups with distinct objectives, dynamic and static. The
dynamic variants effectively handle insertions and deletions on an existing tree, while
the data in the static ones must be known in advance.

Rt-tree. The R*-tree [64] is introduced as a compromise between the R-tree
and KDB-tree. In simple words, the RT-tree avoids overlapping of internal nodes
(rectangles) at the same level of tree. To obtain this, objects will be inserted in
more than one leaf if necessary. Figure 11 shows an example of an R*-tree together
with its corresponding planar representation. As can be seen, the node e, which is
partially contained in both rectangles C' and B, is referenced twice in the leaf nodes.
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Figure 11: An R™-tree example
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Figure 12: An Example of a cell tree (source [19])

With the changes made in the structure, the R*-tree has some advantages. Per-
formance for points queries is better due to the absence of overlapping. Instead
of several paths, a single path is traversed. Consequently, fewer nodes are visited
in point queries. On the other hand, there are some disadvantages. The R'-tree
might be bigger than the R-tree as a result of duplicating rectangles. Additionally,
construction and maintenance are more complex in the R*-tree. Furthermore, the
increased complexity of the deletion algorithm is another drawback of the approach
of avoiding overlaps. According to Giinther [27], there is another problem in the
R*-tree algorithm, which could happen in some insertions. It happens when the cov-
ering rectangles do not allow each other to expand in order to include the inserted
object. As a result, the so-called dead spaces are produced in the current structure
that cannot be covered. It means that if a new object places in those regions, it
cannot be fully covered. To cover the uncovered areas, one or more rectangles have
to be split and this leads to splitting of some children as well. This case degrades the
storage efficiency. However, the overall performance of this structure is improved as
a result of absence of overlap between MBRs in internal nodes [53].

The Cell Tree. To avoid the overlapping problem of R-tree and dead spaces in
the R*-tree, the cell tree [28] was introduced. Partitions in this tree may be convex
polyhedra as bounding polygons, instead of rectangles, such that the partitions do
not overlap. Since some spatial objects are shaped irregularly, this method gives
a better approximation of them. For example, the internal nodes in Figure 12 are
polygons.

Similar to the R*-tree, objects may be stored in more than one leaf, if necessary.
This could lead to a division of new objects in order to place them in bounding
polygons that do not overlap. As an instance, the object b in Figure 12 is contained
in two different leaf nodes as b; and b,. This will be more serious in populated
databases.
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R*-tree. In order to achieve better performance, the R*-tree [7] goes beyond
the MBR area minimization by trying the following criteria, as Manolopoulos et
al. [46] explains:

e Minimizing the covered area by MBRs to minimize the dead spaces, which
leads to fewer paths needed to be traversed in queries.

e Minimizing the MBRs overlapping to reduce the paths, which must be followed
by queries.

e Minimizing the MBR margins to shape squarish rectangles, which improve the
performance of queries with large quadratic shapes.

e Maximizing of storage utilization.

In fact, unlike the R-tree, which determines the MBRs according to their area, the
R*-tree determines them based on their area, margins of space, and overlaps with
other MBRs. Additionally, Forced Reinsertion is a key concept in this algorithm
which deletes and reinserts elements of a full node to prevent splits. To find the best
combination of the criteria, it is necessary to implement an optimized approach. This
is important since the criteria can conflict sometimes. The optimization is obtained
with a revised node split algorithm and also forced reinsertion, which finds a better
place for a node than its original place. This structure results in the following
performance improvements:

e More rectangular pages produced by the revised split algorithm are better for
many applications.

e Better performance is gained through the reinsertion method, however it in-
creases the complication.

As expressed by Beckmann et al. [7], the efficiency of R*-tree is generally better
than R-tree and some other variants, although it has slightly higher implementation
cost than the R-tree.

X-tree. The X-tree, proposed by Berchtold et al. [12], is another extension to
support high-dimensional data processing. X-trees are in fact based on the R*-tree
and focus on the prevention of MBR overlappings in order to minimize the amount
of paths that have to be traversed. Unlike R"-tree, this approach does not always
split a data region. Instead, it uses a more complex algorithm by analyzing the
size of overlap occurred for each split. Then, it decides on choosing the minimum
overlapping or creating a new kind of node, called supernode. Supernode refers
to internal nodes containing more data values and pointers than the maximum
capacity of normal nodes. In fact, supernodes are constructed to contain the extra
entries when there is no good split, particularly in high-dimensional spaces which
overlapping becomes a serious problem. Figure 13 shows the supernodes in gray
which are extended to contain six node links instead of three in normal nodes. This
will help to decrease the tree levels and consequently improves the efficiency of
queries.

The X-tree outperforms the R*-tree in high dimensions as a result of increase in
the number of supernodes. However, the unlimited number of children in supernodes
could effect the search time and sibling overlaps will grow with dimensionality as
Wang et al. [71] state.

16



I Normal Directory Nodes EEE Supernodes O Data Nodes

Figure 13: Structure of the X-tree (source: [12])

R-tree with packing algorithms. Suppose all the required data is available or
at least does not change frequently when the tree is going to be built. For instance,
in census and cartographic and environmental data insertions and deletions rarely
or even never happens. For such applications, constructing an optimal structure
should be focused with regards to some tree characteristics, such as maximizing the
storage utilization and minimizing the storage overhead, coverage, and overlaps in
the R-tree. The methods to build such an R-tree contain a preprocessing step and are
known as packing or bulk-loading. The packed R-tree, proposed by Roussopoulos and
Leifker [58, 59], is one of the statically constructed R-trees that has this preprocessing
step. This early effort simply suggests to order the objects based on a criterion, like
ascending X coordinate. Then, to build the tree, the object with the minimum
value of in the ordered set is chosen to find its M nearest objects. Here, M is the
maximum number of objects that are allowed in a page. These nearest objects form
a node. The bounding boxes of these objects also shape the higher nodes. This step
is repeated until the whole objects are assigned to a node and the tree is completed
up to the root.

The Hilbert Packed R-tree is another method to construct a static R-tree using
the packing algorithm by Kamel and Faloutsos [35]. This method, which has a
full space utilization, proposes sorting the objects based on their Hilbert value of
their center and then inserting them into the tree. The packed R-trees could be
created with other packing algorithms. In the following, another packing algorithm
is described, which we will use to create a static index structure.

Sort-Tile-Recursive (STR). Sort-Tile-Recursive (STR) [41] is the state-of-
the-art packing algorithm to build a static R-tree. As we discussed before, a dynamic
R-tree may not always give the best structure, in addition to the high load-time and
suboptimal space utilization. Therefore, static creation in cases at which the data
does not change frequently, is advantageous. The so-called STR-tree approach sorts
the rectangles by their X coordinate and then places them into \/r/n vertical tiles,
such that the number of rectangles in each tile is \/r/n. Here, r is the number of
total rectangles and n is the maximum number of rectangles that can be inserted
in each node. Then, the rectangles are sorted by Y coordinates. At the end, the
rectangles are inserted in tree nodes in sorted order. As declared by Leutenegger [41],
this structure improves space utilization and query performance as well as the other
packing structures. However, in case of data modification the whole structure must
be rebuilt.
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2.3.3 Quad-Tree

Another general category of indexing structures is the space filling structures that
is studied by Jagadish [34]. Among this category, we present the Quad-tree [25],
which is mostly used in geospatial indexing. Quad-trees are based on the principle
of recursive decomposition. The goal of this tree is to design a structure in main
memory, often for two-dimensional data.

In fact, Quad-tree is a class of tree structures in which the common structure,
called region Quad-tree, is based on the subdivision into four equal-sized quadrants.
It means that each internal node has four children. The spaces may have rectangular
or any arbitrary shape. The leaf nodes represent the corresponding data contained
in a region. The space is divided more and more in the regions in which the data
is more dense. As a result, this structure is very efficient for sparse data. Several
variants of Quad-tree have been introduced to obtain more optimized structures
such as Quad-CIF-tree [36], MX Quad-tree [67], and a combination of both, MX-
CIF Quad-tree. However, most of them satisfy the common properties, are easy to
implement, and provide good performance for two-dimensional data. It should be
mentioned that the performance is not always satisfying since the tree might not be
balanced and main memory maintenance of the structure is tricky due to the poor
I/O throughput. Also, as we discussed, this data structure is basically designed for
two-dimensional data.

2.4 Summary

In this section, we mainly explained some important spatial indexing trees which
are widely studied in the literature. Indeed, there is a huge number of indexing
structures introduced in various sources over this area. Also, these structures are
categorized differently in each source. However an extensive research on indexing
trees was not our focus, we tried to cover a set of leading ones as an introduction
in developing a proper index structure in BaseX. As mentioned before, choosing an
index depends on the characteristics of system and also the functionality that the
system provides. Of course the spatial characteristic of data should be considered
as well. Regarding the discussion in this section, there is no optimum indexing
structure for any type of data and requirements. Based on the application, each
structure has own pros and cons. Together with the explanations, we provided
a brief description of advantages and disadvantages for each index. Table 1 lists
these structures and summarizes their advantages and disadvantages from different
viewpoints. Based on the requirements, one can search this table for the suitable
tree of that special case.

Among the presented indexes, the STR-tree is the one that we have selected
for further implementation. Here, we explain different reasons for this selection.
In general, the B-tree based structures are designed to search efficiently structures
stored in disk files. Among those, the R-tree is a common and widely used technique
in spatial databases according to Lee et al. [40]. Focusing on the packed R-trees,
they have a preprocessing stage, which results in 100% space utilization and better
query time (see [40]). The STR-tree as one of these packed R-trees is counted as an
advanced one and is effective for datasets with few changes. Also, Papadopoulos [53]
states that the STR~tree generally outperforms the previously proposed bulk-loading
methods except in some minor cases. Besides, this structure is also included in the
widely used JTS library, which we will use in the implementation of the Geo Module.
Since the number of open-source libraries providing these tree structures is small and
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we do not aim to implement a structure from the beginning, the STR-tree package
in the JTS API, which is compatible with BaseX Geo Module is a good option to
choose.

Another tree structure in the JTS library that can be considered to implement
is the Quad-tree. In contrast to the STR-tree, it is particularly optimized when the
data set changes dynamically. However, this is not the focus of this study and is
considered as future work.
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Indexing Tree

Advantage

Disadvantage

KD-tree

Simple implementation,
Good performance for 2D if
the tree is balanced

Not balanced, Storage
inefficiency, Poor deletion

Non-Homo
KD-tree

Optimized deletion

Not balanced, Storage
inefficiency

KDB-tree

Balanced, Paging
Technique, Storage
Efficiency

Trade off between
height-balanced and
storage efficiency

HB-tree

Handling sparsity, Better
search performance, Better
insert performance, Decent

space utilization

Expensive deletion,
Multiple reference to the
same data

Based on the Binary-tree

Matsu.’s
KD-tree

Non-point data indexing

Duplicate Storage

4D-tree

Non-point object indexing,
Avoiding object duplication

High cost of its intersection
search

SKD-tree

Non-point object indexing

Memory-based

R-tree

Highly balanced point and
non-point objects indexing

Large covered area and
overlapping by MBRs,
Multiple path traversal in
point queries

Rt -tree

No overlapping of MBRs,
No multiple path traversal

Rectangle duplication,
Bigger structure,
Complicated structure,
Complex deletion process,
Dead spaces

Cell-tree

No MBR overlapping, No
dead spaces

Object duplication

R*-tree

Minimizing coverage area,
overlapping, and margin of
MBRs, storage utilization

Slightly more cost than
R-tree

Packed R-tree

Based on the B-tree

Only one time-consuming
preprocessing step

Poor performance in
frequent data modification

STR-tree

Only one time-consuming
preprocessing step

Poor performance in
frequent data modification

X-tree

No overlapping of MBRs,
Good performance

Increased search time in
high dimensions

Quad-tree

Space
filling

Efficient for sparse data

Poor performance in
high-dimensional data

Table 1: Summary of the index structures studied in Section 2.3.
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3 Related Work

Investigating the various concepts of geospatial processing in XML databases helps
to gain an insight into further solutions and developments. Based on our inves-
tigations, we will mostly be discussing three main areas: storage, querying, and
indexing. There is a large amount of researches and literature in these topics from
which we summarize selected ones here. Besides, the geospatial processing issues
in three famous databases are reviewed, which might be beneficial to design the
properly fitting solutions in BaseX.

Since GML data type is our focus, we mainly concentrate on the topics related
to this standard. Section 3.1 introduces the approaches regarding the storage of
geospatial data in GML. These approaches are investigated with respect to the
effectiveness of storage models in terms of query processing. The proposed querying
ideas will be explained in Section 3.2. Finally, we will look at the databases in
Section 3.3 and how they handle the geospatial data and provide the related features.

3.1 Storage

Omne of the basic approaches to store GML data is proposed in Li et al. [43] to
store both spatial and non-spatial data in a spatial database, like Oracle Spatial
and PostGIS/Postgres SQL. This approach first generates the schema tree and then
maps it into the relational schema to store all spatial objects as the values of table
fields in the spatial database. Geospatial queries can be submitted in an XQuery-
like language with spatial functional extensions. These GML queries are translated
into the equivalent SQL queries which are evaluated using the spatial database
management system. A similar approach is discussed in Xu et al. [76] to store and
query the GML data focusing on non-schema documents. After the generation of
GML parse tree, the nodes are analyzed and schema mapping is generated to store
the document in an object-relational database. Both spatial and non-spatial queries
are also supported in this approach.

In contrast to the mentioned approaches, Zhang et al. [73] considers the charac-
teristics of XML databases and stores the GML data in the original format without
any conversion or mapping to a relational or object-oriented database. It also sup-
ports the self-descriptive and semi-structural characteristics of XML. This is only
one of the many strategies, which propose a native XML database, considering the
GML structure in storage and querying. In general, these kinds of strategies follow
the below steps,

1. import and parse the GML schema,

2. map the feature object and document schema,

3. establish the corresponding collection in the database,

4. import the GML document according to the parsed schema,

5. partition and store the GML document into the corresponding collection, and
6. record the log file containing the GML partitioning information.

Zhang et al. [73] as an example of these approaches develops a prototype system
based on Java API for XML Processing (JAXP) and JTS library to implement the
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above-mentioned steps. This prototype contains three building blocks: the schema
mapping constructor, the document storage tool, and the spatial analyzer.

Another challenging issue in storage is the size of GML data that is commonly
huge. We present one example of several research papers in this area to complete
the discussion over the storage. Wei [72] discusses a query-friendly compression of
GML file in SAX document parsing, which does not consider the full decompression
for both the direct and the spatial path querying. Briefly, this approach generates
three different structures from the SAX parsing event, which are an event hierarchy;,
an event dictionary, and a binary event tree. All these three structures together
with the document contents are stored in a compact representation to be used in
partial decompression for querying.

3.2 Geospatial Query Languages

Numerous contributions have been done toward introducing a GML query language.
Here, we summarize just a short list of them trying to cover the various ideas we
have met. Section 3.2.1 starts the discussion with the XQuery based languages
which extends the XQuery to process the GML data. Then, we bring related work
regarding the integration of geospatial and non-geospatial data from different sources
in Section 3.2.3. This integration is a matter of interest as the data is mostly is a
mixed of both types. The knowledge- or ontology-based approaches come next in
Section 3.2.2.

3.2.1 XQuery-Based Languages

XQuery language, recommended by W3C, as a powerful query programming lan-
guage for structured and non-structured data, is not applicable to spatial data, as
discussed in [42, 18]. However, Li [42] concludes that XQuery is suitable to be ex-
panded in order to develop a spatial query language. It is emphasized that the GML
data should be treated different than XML data. Hence, Li [42] chooses XQuery as
the base language to expand into a GML query language. The proposed language
supports not only predefined GML elements but is also flexible to handle various
GML data. It means that a query can be designed without knowing the concrete
elements of the GML document. Code 3 is an example of this language and its flex-
ibility, which retrieves all geometries within a region. As can be seen, the common
vocabularies such as feature and geometry are used and no concrete tag names or
data types are mentioned. In addition, a set of operators and functions is appended
that covers the typical queries over the geospatial data. In comparison with similar
contributions, this approach is applicable not only for predefined GML types, but
to any type.

Code 3: A sample query of a flexible query language.

for $feature in gfn:getFeatures(doc( sample.xml ))
where gfn:within(gfn:getGeometry($feature), gml:Envelop (...))
return S$feature

Another contribution that supports the idea of integrating GML and XQuery
is presented in Chen [18]. It introduces a new GML query language, named GX-
Query. Adding spatial data types and operations to XQuery, based on the OGC
Simple Features Specification for SQL, Chen [18] represents the architecture and im-
plementation methods of GXQuery which supports spatial, non-spatial, and mixed
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spatial and non-spatial queries. The GXQuery engine is composed of XQuery en-
gine, GML parser, spatial extension module and a module of GML index interface.
A component based on the JTS API is implemented in this engine to be used as the
base of spatial extension. A typical spatial and non-spatial query example of GX-
Query is given in Code 4. This query checks if two geometries corresponding to the
“Building” features from “Campus.gml” file are spatially equal. This file contains
the data representing the facilities of a university campus.

Code 4: A typical example of combined spatial and non-spatial query in GXQuery.

for $varl in doc( Campus.gml )//Building,

$var2 in doc( Campus.gml )//Building
where

$varl/gml:name/node ()= Library and $var2/@fid =10028
return geo:Equals($varl, $var2)

A final example of XQuery-based GML database is Fubao [75] which expands
the data model, algebra, functions, operations, and formal semantics in XQuery to
achieve a GML query processor. New spatial datatypes and operators are added to
XQuery to support both spatial and mix (spatial and non-spatial) queries. Unlike
the previously mentioned approach in Chen [18], supported data types are limited
to Geometry, Coord, Coordinates, Point, LineString, LinearRing, Polygon, Box,
GeometryCollection, MultiPoint, MultiLineString, and MultiPolygon. These data
types are actually the predefined ones in this method. The spatial operations which
are defined in this method are as follows,

e simple geometry operation, such as calculating the envelope, boundary, or
dimension of a geometry,

e spatial relation operation, such as finding the overlapping, containing, and
touching relations of geometries,

e spatial analysis operations, such as finding the union, difference, or intersection
of two geometries, and

e geometry-specific operations, such as finding the start-point of a line or the
interior ring of a polygon.

The spatial computations are handled again by the related JTS functions in back-
ground.

3.2.2 Knowledge- or Ontology-Based Approaches

In addition to the XQuery-based language developments, other concepts of spatial
query languages have already been developed. Alemdros [2, 3] defines a semantic
version of XPath which is not based on the tree-based (syntactic) structure of GML.
Instead, a system is developed to implement a query language based on the semantic
structure of GML. More clearly, the GML schema is used to define the queries.
However, a semantic content can be structured in several syntaxes. The system
stores GML by PostGIS database system and transforms the XPath-based GML
queries into the SQL language, considering the GML schema in order to execute
semantic based queries. The results of these queries are visualized by exporting into
the KML format.
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Gutierrez et al. [29] also brings a new idea and presents a knowledge-based ap-
proach to query heterogeneous spatial databases by identifying not only the entity
classes but also the similar instances. It means that the database uses a conceptual
schema to do the queries. The queries based on the ontology and conceptual similar-
ities are transformed into a formal specification of entity classes which are compared
against the definitions in the database. This process is carried out by determining
the conceptual similarity between entities in a user ontology and by comparing the
entities in ontology with the entities in conceptual models of databases. In addi-
tion to the specification of the idea, the system architecture, the user ontology, a
conceptual schema are provided in this effort.

Another important task that is handled by Ontology-based queries is to query
the data of different format and from various sources, like legacy data stored in
databases, shape files, or even the feature data in Web Feature Services (WFS).
Since a huge amount of the geospatial data is increasingly provided distributed over
sources, a sharing accesses strategy is extremely needed. Zhao et al. [74] presents
a method to spatial data interoperability at semantic level by an interface in RDF
ontology. There is no need to replicate legacy data stored in relational databases,
shapefiles, or GML data accessible through WFS. Instead, the queries are written to
WEFS getFeature request and SQL statements in databases. This interface provides
an ontology layer for geospatial data accessible through WE'S services or databases.
The queries are written in the common terms of the domain and application ontology.
The interface uses the spatial query functions of WFS servers for feature rendering
and relational databases as sources for non-spatial data, since this can improve the
performance of non-spatial queries.

As a completion to the discussion from the previous paragraph, a work is pre-
sented here to discuss the whole idea of the geospatial processing from web. The web
technology, which is widely used nowadays, was an area investigated by Cércoles [21]
for the geospatial data. This effort proposes an approach to integrate geospatial data
on the Web by focusing on the definition of a mapping between the ontology and the
DTD/Schemas. Geospatial data in this work is stored in GML format and a query
language is designed for querying each GML document in the same way. Moreover,
ontologies solve the semantic heterogeneity of different GML documents by defining
a catalog in RDF, such that this catalog establishes a correspondence.

3.2.3 Integration of Spatial and Non-Spatial Data

Toward integrating spatial and non-spatial data from different sources, it is neces-
sary to develop an integration system. Corcoles [21] discusses a prototype of an
integration mediator for querying the spatial XML resources. This approach mainly
provides an interface or global schema for querying the resources with different
schema. This global schema is a simple object-oriented structure in RDF described
as an ontology. More clearly, this work provides the infrastructure for formulating
structured spatial queries considering the conceptual representation of a specific do-
main, like the information of New York, in the form of an ontology. The mediator
translates the queries in terms of RDFS to queries that refer to the schemes of GML
resources.

Regarding the integration issues, Belussi et al.[9] explains a problem arised from
the different representation of spatial data in various resources or even in integration
scenarios or architectures. For example, one dataset represents roads and bridges as
regions, another dataset represents roads as regions and bridges as lines, and a third
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dataset represents both as lines. In case the user wants to query this spatial data
integrated with non-spatial data, there will be indeed some gaps in the stored data.
Here, this gap might cause difficulties in querying as well as some inaccuracies in the
results. This integration approach introduces a solution based on a query relaxation
mechanism to return approximated results with possibility of specifying maximal
error allowed in the execution by the user. In particular, some relaxed topological
predicates, called weak, and the related application contexts in terms of application
scenarios are presented to show their usability. Moreover, an existing XQuery-based
GML query language is extended to support similarity-based queries through the
proposed operators and to handle the weak topological predicates, from the syntax
and implementation perspective. This language uses also the JTS API to provide
spatial object model and fundamental topological functions and relations. Below,
sample queries in this language are shown:

e Determine all roads overlapping some bridges.

for $x in document(bridge.xml), $y in document(road.xml)
where overlap($x/geometry, $y/geometry) = true
return $x

e Determine all roads overlapping some bridge, up to a 22% error.

for $x in document(bridge.xml), $y in document(road.xml)
where overlap ($x/geometry, $y/geometry ,R,L,0.22) = true
return $x

3.3 Geospatial Processing in Databases

Besides analyzing various general ideas of geospatial processing in databases, it
would be advantageous to know the geospatial features and functionality in well-
known database systems. In this section, we briefly introduce the geospatial issues
in the widely used databases, MongoDB, eXist, MarkLogic, and MonetDB as all of
them have geospatial functionality. We will see how the different ideas are provided
and used in practice.

3.3.1 MongoDB

MongoDB [54, 5] is one of the leading NoSQL databases used especially in web appli-
cations. Here, we consider the 2.4 version series of this software. MongoDB supports
both flat and spherical space in geospatial processing. Geospatial features in Mongo-
DB are mainly executed by a few operators, which can be combined to produce more
advanced queries based on the use cases. The operators are $geolntersects, $geo-
Within, $near, and $nearSphere which first indicate the query operation. Then, the
geometry specifiers serve to form the query conditions. These specifiers, $geometry,
$mazxDistance, $center, $box, $centerSphere, $polygon, and $uniqueDocs, define the
various geometries and conditions in GeoJSON or in legacy coordinate pairs to filter
the results. The calculation units in the spherical space can be meter or radiant.
The units in the flat space are determined by the given coordinate system.

Apart from the operators, some particular geospatial queries can be done through
the geospatial commands, geoNear, geoSearch, and geo Walk. The command geoNear
is an alternative to the $near operator which returns additional information, for
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example the distance of each returned item from the given point or some trouble-
shooting diagnostic information. The command geoSearch is an interface to use the
Haystack index and geo Walk is an internal command.

The Geospatial Index. The geospatial index in MongoDB is based on the geo-
hash [37] data structure. Regarding the importance of geohash, we shortly explain
it before discussing the index in detail.

The geohash value is calculated by recursively dividing the space into buckets
of grids and assigns a two-bit value to each part (Figure 14). This number, called
geohash value, does not really point to the coordinates, rather the bounding of
the coordinate is represented. As the division goes further, the geohash values are
becoming longer and the areas are becoming smaller. At the end, we will have a
hierarchical spatial structure. Here are some properties of geohashing:

e It provides a short, concise, expressive, and as accurate as necessary represen-
tation of locations that have not to be a precise point.

e [t simply groups the points by giving the whole places of a quadrant the same
value. Nearby places often share similar prefixes. Conversely, the longer a
shared prefix is, the closer the two places are.

e Arbitrary precision and the possibility of gradually removing characters from
the end of the code to reduce its size and precision is properties that geohash
offers. Therefore, it allows to zoom into the areas to select the level of precision.

e [t facilitates the unique identification for points and locations.

e It could represent databases as data points. All data points belonging to a
grid square can be cached using the related geohash value.

e For finding the nearest neighbor, an index on geohash which sorts them alpha-
numerically, returns the result directly, as the closest string is the nearest
point. However, here we can spot a problem with finding nearest neighbors
which will be discussed in the following.

Using geohash as a structure for storing, the data structure in database has
some advantages based on the above-mention properties. It saves the resources due
to storing the two values of longitude and latitude in a single string value without
any space and punctuation signs. In addition, having geohashes as strings is an
important issue which some of the advantages are as follows:

e The length of the string correlates to its precision.
e Strings can be grouped by prefix.

e They are easier to store in databases.

e They are faster to query.

On the other hand, the indexed data with geohash are positioned in adjacent quad-
rants and consequently the queries will be faster when tracking them down with the
single index than multiple-index on longitude/latitude values. This index can be
used in quick proximity searches which do not have to be precise.

The Geohash algorithm has a shortcoming when it attempts to find the near
points based on the common geohash prefix. When points are close but located on
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Figure 14: Representation of geohash values for eight quadrants

opposite sides of a common boundary of two quadrants, they have not only distinct
prefixes but wildly distinct geohashes, such as points located on the other sides of the
Equator or a meridian. This would cause inefficient proximity searches. To solve this
problem, the geohash of the eight surrounding quadrants must be calculated to find
the matching locations residing on both sides of boundaries. Another problem comes
from the projection-based model of the geohashing. This means that a geohash of
a specified prefix length will represent the areas with big difference in size near the
pole than near the Equator. Rogers [57] discusses the limitations of geohashing and
possible design aspects to improve the efficiency.

Using the geohash values, MongoDB provides two special indexes, 2d index for
planar geometries with legacy coordinate pairs and related calculations and 2dsphere
index for spherical calculations. The 2d index is required when we need an index
structure for the flat data and 2dsphere index must be chosen for the spherical data
expressed in GeoJSON; since the distance function differs respectively.

To define the 2d index, geohash values are generated for legacy coordinate pairs
and the geohash values are indexed using B-Tree instead of the coordinate pairs.
MongoDB also provide another 2d index optimized, called Haystack index, to return
the results in small areas and is not supported by spherical query operations. To use
the Haystack index in queries, $geoSearch command should be used. Actually, the
ways which 2d and 2dsphere index could be applied, cannot access sometimes these
small areas. MongoDB also uses B-Tree structure for other type of index, such as
Single Field (e.g. indexing over names), Compound, and Text Index.

MongoDB supports the following general operations to be executed with geo-
spatial indexes through the mentioned operator:

e Inclusion: for locations contained entirely within a specified polygon, which
uses the $geo Within function.

e Intersection: for locations that cross or intersects with a geometry using the
$geolntersects function.

e Proximity: for locations that are near to a specified point by the $near func-
tion.

The way that the index structure should be applied varies in different queries. For
instance, the $geoNear command expects the collection to have at most only one 2d
index and/or only one 2dsphere. The limitation has to be considered while using
the operations or commands.
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3.3.2 MarkLogic Server 7

Geospatial data in MarkLogic is encoded as XML elements and/or attributes in

different representations. MarkLogic handles the geospatial data in GML, KML,

GeoRss, WKT, and even a general format for geometric data that are not based on

a specified format as explained in [22]. Similar to MongoDB, WGS84 and the raw

coordinate systems are supported for geospatial data. WGS84 is used for data on

the earth and the raw coordinate system is suitable for the data on the flat plane.
Regarding the geospatial queries, the following types are supported:

e Point query: Queries matching a single point.
e Box query: Queries searching for any point within a rectangular box.

e Radius query: Queries searching for any point within a specified distance
around a point.

e Polygon query: Queries finding any point within a specified n-sided polygon.

To run the geospatial queries, numerous geospatial query constructors exist as well
as geospatial operators as built-in functions to perform the operations. Here, some
of these operators are listed:

e box-intersects: Returns true if the box intersects with the given region.
e circle-intersects: Returns true if the circle intersects with the given region.

e polygon-intersects: Returns true if the polygon intersects with the specified
region.

e complex-polygon-intersects: Returns true if the complex-polygon intersects
with the given region. A complex polygon is a polygon which is not convex or
concave.

e polygon-contains: Returns true if the polygon contains the defined region.

e complex-polygon-contains: Returns true if the complex-polygon contains the
given region.

e distance: Returns the distance (in miles) between two points.

e shortest-distance: Returns the great circle distance between a point and an
region.

e destination: Returns the point at the given distance along the given direction
from the starting point.

The region in these operations is a circle, box, polygon, linestring, or complex-
polygon which is defined by a region constructor. The geospatial query constructors
build the queries on the geospatial data. Depending on the use case, the relevant
constructors and functions from the correspondent namespace should be applied.
For instance, if we want to query data expressed in both GML and KML, the
geo namespace functions are the best choice since they support the queries in all
supported geospatial formats. Also for data in geoRSS, the functions in georss
namespace could be used. This concept is shown in Code 5, which searches for the
points inside the specified region.
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Code 5: A query example in MarkLogic using geospatial functions

xdmp:document—insert (" /points.xml",

<root xmlns:geo="http:// marklogic.com/geospatial”>
<item><gml: Point><gml:pos>10.5 30.0</gml:pos></gml:Point></item>
<item><georss:point>15.35 35.34</georss:point></item>
<item><Dot Latitude="5.11" Longitude="40.55"/></item>

</root> );

cts:search(doc(”"/points.xml”)//item,
geo: geospatial —query(
geo : box(
<gml: Envelope>
<gml:lowerCorner>10.0 35.0</gml:lowerCorner>
<gml:upperCorner>20.0 40.0</gml:upperCorner>
</gml:Envelope>)

))

| Result : <item><georss:point>15.35 35.34</georss:point></item>

Another example represented in Code 6 shows how MarkLogic returns the points in
a given path which lie inside the defined region.

Code 6: A sample geospatial query in MarkLogic

cts:search(doc(”"/points.xml”)//item,
cts:path—geospatial —query (" /root/item/point”,
cts:box(10.0, 35.0, 20.0, 40.0)))

Primitive types are another fact in the geospatial queries which might be needed
in query conditions as shown in the previous Codes 5 and 6 using the boz constructor.
These types as instances of the base type region, encompassing box, circle, complex-
polygon, linestring, point, and polygon. For instance, the contents of the polygon
element in the document “zip.xml” can be cast to a cts:polygon using the cts:polygon
constructor as in the following,

cts:polygon(fn:data(fn:doc(”zip.xml")//polygon[@id eq "712"]))

MarkLogic also provides functions to handle the WKT datatype. The function
parse-wkt reads WKT into the region items as the following example returns a

polygon.

cts:parse—wkt("POINT(10.10)")

This point can be used in queries as any other type. Conversely, the function to-wkt
converts region type to WKT.

The Geospatial Index. Geospatial index in MarkLogic is based on neither the
quad tree nor R-tree. It works similar to a range index with points as data values.
In this range index, every value is a pair of latitude (lat) and longitude (long). Like
an array of x,y values, sorted mainly based on latitude and then longitude values.
The values in this array are also connected to the corresponding document. The
points would be founded easily in a sorted structure. Boxes could be found first by
finding the latitude range, then checking for the longitude range. For circles and
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Data Path
<a:geo>

<a:location>37 —122</a:location> | /a:geo/a:location
</a:geo>
<a:geo>

<a:location data:"37.-122/> /a:geo/a:location/@data
</a:geo>

Table 2: Data and the related path for indexing in MarkLogic

polygons as well as more complex types, the geometry’s bounding box is used to find

the region they belong to. Also, to check whether a point is inside the polygon, the

number of intersections with the northward or southward arc of the point is counted.
Based on this structure, Marklogic supports the following geospatial indexes:

e Geospatial Element Indexes: With this index, the data is represented by
whitespace or punctuation separated element content. The lat-long or long-lat
point formats could represent a point. Other entries such as z-coordinate or
altitudes will be omitted.

e Geospatial Element Child Indexes: With this index, the data comes only from
the elements that are a specific child of a specific element containing whitespace
or punctuation separated content.

e Geospatial Element Pair Indexes: In this index, the data is considered from
specific pair of elements that are a child of another specific element.

e Geospatial Attribute Pair Indexes: With this index, the data is involved in a
pair of specific attributes of a particular element.

e Geospatial Path Range Indexes: With this index, the data is expressed in the
same manner as a geospatial element index and the element or attribute index
is defined by a path expression. Table 2 shows two examples of the data as an
element and attribute and related paths for indexing each one. It should be
mentioned that a defined path cannot be replaced with a new one unless it is
removed.

To speed up the retrieval of geospatial values geospatial indexes enable geospatial
lexicon lookups. Since these functions are implemented using geospatial indexes,
the appropriate index must be created in order to use a geospatial lexicon. As an
example, a geospatial element index is needed to use the element-geospatial-bozes.
Here is a sample to show how these functions are used and returns values from the
specified element geospatial value lexicon that match the specified wildcard pattern.

cts:element—geospatial —value—match(xs:QName(" point”),
cts:point(10,20))

Result : 10,20

For querying on geospatial data in MarkLogic, after loading the data into the
database and making the indexes, primitive types should be constructed to be used
in query functions. Then, geospatial queries are constructed using these primitive

types.
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3.3.3 eXist-db

eXist-db [68] version 1.23 supports geospatial data in GML 2.1.2 format. The geo-
spatial features are provided using the JTS API in geospatial computations. The
general development idea of indexing in eXist-db follows a modular architecture. The
geospatial index is developed based on this model and maintained as a pluggable
extension. eXist-db connects to a relational database to index spatial data. The
index does not store character data from the document. Instead, WKB index entries
are stored through the JDBC in the HSQLDB or any other relational database
namely PostGIS.

The index creation relies on the open-source libraries of the GeoTools [20] project.
Geometries are stored both in the original coordinate system and WGS84 system
in index structure to allow the operations on data originated from the different
systems. In this way, transformations between coordinate systems are included
using GeoTools library.

To query a spatial dataset, the spatial index and the spatial module must be
enabled in the main configuration file (conf.xml). The following content in a con-
figuration file of a collection in a database configures the spatial index on GML
geometries.

<collection xmlns="http://exist—db.org/collection —config/1.0">
<index>
<gml flushAfter="200"/>
</index>
</collection>

The attribute flushAfter=“200” says that the index entries in memory will be flushed
into the HSQLDB. Now, the dataset is ready to query and Code 7 is a sample
query that returns the whole polygons intersecting with the second argument of the
spatial:intersects function.

Code 7: A spatial sample query in eXist-db using the spatial:intersects function

declare namespace gml = "http://www.opengis.net/gml”;
spatial :intersects(//gml:Polygon,
<gml:Polygon srsName="osgb:BNG" xmlns:gml="http://www.opengis.net/gml
>
<gml:outerBoundaryls>
<gml:LinearRing>
<gml:coordinates>
08.278200,187600 278400,187600 278400,188000 278200,188000
278200,187600
</gml:coordinates>
</gml:LinearRing>
</gml:outerBoundaryls>
</gml:Polygon>

)

3.3.4 MonetDB

MonetDB?* basically is a relational column-store database, which has implemented
a separate module to support the objects and functions in the OGC “Simple Fea-
tures Specification for SQL” [8]. The current implementation of spatial support

3The spatial module in eXist-db is still in experimental status.
4The information that is presented here, is from January 2014 Bugfix.
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is still simple. MonetDB stores XML in its relational architecture as Boncz et
al. [13] describes. The geospatial component in MonetDB wraps the open-source
GEOS library [48], which is the C++ implementation of the JTS API. When geom,
the geospatial module in MonetDB/SQL component, is enabled, then the created
databases are spatially-enabled by default. MonetDB supports the OGC geospatial
types. Besides, a non-OGC type, called mbr, is used for storing a 2D box for fast
access. Numerous functions exist in MonetDB to provide SQL-based geospatial
querying. These functions are categorized in geometry constructors, functions on
specific geometry, and functions on bounding boxes. Function on boxes could be
used for pre-filtering in some complicated queries. Below some geospatial functions
that can be used in queries are shown:

e ST_GeometryFromText (wkt string), which creates a geometry out of WKT
string.

e ST_AsText(geom Geometry), which returns the WKT representation of the
Geometry.

e ST_ConvexHull(geom Geometry), which returns the convex hull of the Geo-
metry in the Geometry format.

e ST_InteriorRingN(geom Polygon, ringNum integer), which returns the n-
th interior ring of the Polygon as a linestring.

e ST_IsRing(geom LineString), which returns a boolean value showing whether
the LineString is both closed and simple or not.

e ST_XMax(box mbr)/ST_XMax(geom Geometry), which returns the maximum
X coordinate of the provided bounding box. In latter case, which a 2D geo-
metry is provided, first its bounding box is computed.

e mbr(geom Geometry), which returns the minimum bounding box created
for the geometry.

e @ (mbrContained function), which returns a boolean value expressing whether
box1 is contained by box2 in boz1:mbr @ boxr2:mbr.

e && (mbrOverlaps function), which returns a boolean value showing whether
two bounding boxes overlap in boxl:mbr && box2:mbr.

The following example returns a geometry form the spatial table:

SELECT PointFromText('POINT(" || long || * " || lat || ")') FROM
spatial LIMIT 1;

As Vermeij et al. [70] discusses, MonetDB benefits from the design principles
for spatial query processing in three main areas. First, the column-based storage
approach keeps the non-needed geometry out of the way since the traditional tuple-
based storage model stores the whole tuple physically together on a disk block. Ad-
ditionally, some efficient filtering stored in the same column and some approximate
geometries, e.g., minimum bounding box, maximum enclosed circle, and maximum
enclosed rectangle stored in other related tables would speed up the queries as the
index structure does. Second, the MonetDB query optimizer effectively improves
the geospatial query performance. Third, the spatial data types integration with
XML types in MonetDB is considered as an efficient way of querying.
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3.4 Other Related Topics

In addition to the aforementioned topics, some other areas have been discovered as
well in this research line. We briefly discuss here two ideas that might be advan-
tageous for more geospatial features and processing in a geospatial database. The
first idea, presented in the first paragraph, is about the unification of the coordinate
system when the data is coming from different sources. The second idea, presented
in the second paragraph, is pointing to a completely different idea of finding a path
between to points in these database.

Schwarz et al. [63] introduced a library for geospatial data management to enable
handling the different coordinate systems. This library provides geospatial functions
which are delegated to JTS library. As mentioned before, JTS library only supports
the Cartesian coordinate system and the input geometries should be in a common
system to be processed. It can happen that the geometries have different coordinate
systems. For example, it might happen when the data is provided from different
sources. In order to work with JTS library, a common coordinate system is chosen
to which other systems of the current data is converted. This coordinate system is
chosen considering the the transformation issues to have the minimum differences
from the original data and to maximize the transformations precision.

Padmaja et al. [52] introduces an alternative way of finding the shortest path
regarding existing cost. The k-shortest path and many other path finding algorithms
are efficient as long as the effecting cost factors do not change dynamically. This
provided method first finds the shortest paths without considering the cost factors.
At the end, the factors are used to rank the paths. All paths between each two
points could be stored in database in pre-processing stage to reduce the further
combinations. To find the paths, each edge in the network of the connected points
should be provided with the start and end points. The process starts from the
starting point and finds the whole connected ones and continues till reaches the
destination. The paths would be obtained by joining the edges detected in each
step.
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4 Spatial Querying in BaseX

Spatial query is a special type of query that requires the processing of geometries
with two certain properties in general. First, it has geometries as input and output
as well as other primitive types, like double, integer, etc. Second, it considers
spatial relations between the geometries. As we discussed in Section 3.3, there
are various viewpoints in providing geospatial features in a database to fulfill the
expected requirements. Following the OGC Simple Feature (OGCSF) [39] data
model, geospatial features in BaseX adapt the specification of EXPath geospatial
API function interface. This specification defines commonly used functions from
the OGCSF Common Access API [33]. Since the OGCSF data model is typically
represented in GML, we concentrate on adding the support of GML format in BaseX.
However, an implementation could support other encodings such as KML.

Throughout the following sections, we discuss the integration of geospatial data
processing in BaseX. We introduce geospatial functions as a new module, called
Geo Module, in Section 4.1. Query efficiency is improved later in Section 4.2 by
implementing an index structure. Indexing and the related time complexities are
discussed hereafter in Section 4.3 and Section 4.4, as the critical issue in this topic.
Finally, the concluding points are explained in Section 4.5.

4.1 Geo Module

As mentioned above, geospatial features in BaseX are implemented based on the
EXPath Geo Module Specification [60]. This specification contains the definition
of functions for widely used geographic and geometric analysis operations, from
OGCSF Common Access API version 1.2. These functions apply to geometries in
different formats, such as GML, KML, GeoJSON, Well Known Text (WKT), and
even Well Known Binary (WKB). Based on the specification, Geo Module in BaseX
comprises a set of functions, like intersection, within, distance, boundary, centroid,
difference, and union, added to the basez-api package. The geometries supported
in this module are Point, LineString, Polygon, MultiPoint, MultiLineString, and
MultiPolygon. This module is an individual package with a set of classes as briefly
described below:

e (eo: This class is the main class, in which all geospatial functions are defined.
The set of functions in this class is provided to be directly used in XQuery
statements. The complete list of functions and their description are available
in the online BaseX documentation [65].

e GeoFError: This class defines error functions with related messages which are
thrown when an error occurs.

e (GeoTest: Test functions for the Geo class are implemented here.

e (GmlReader: Functions required to parse GML geometries as XML elements
are implemented in this class.

e (Geolndex: This class implements the functions related to the geospatial index.

The geospatial index structure is implemented in BaseX core. Spatial indexing
and related implementation details will be described in Section 4.2. Here, we explain
general functionality of this module.
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Figure 15: Converting GML elements to geometries

The geospatial functions are defined as public methods in the Geo class. They use
some private methods to read geometries or write them out into the GUI. Besides,
each function employs the corresponding function from the JTS library to do the
required geometric operation and provide the appropriate result. Here, we shortly
explain how the input geometries, either from a variable or a database node, are
processed.

Suppose we are searching for all geometries within the specified polygon $p. The
query should be written using XQuery via BaseX GUI as follows:

let $p :=<gml:Polygon>
<gml:outerBoundaryls> ... </gml:outerBoundaryls>
</gml:Polygon>
for $x in //gml:Polygon
return if ( within($x, $p) ) then $x else ()

Each geospatial function has at least one geometry as input, as in the above function
within. In this example, the variable $p is provided as a document node and the
variable $x iterates all Polygon nodes in the current database. Various functions are
involved in processing this query. In the following, this process, which is illustrated
in Figure 15, is explained in detail.

To read the geometries as a document node, the private function geo makes sure
that the node name is at least a valid geometry name. It means that if the element
name is not contained in the set of geometry names, this function will throw an
error. Then, the GmlReader class is used to read and parse the whole element and
to check the validity based on GML 2.0 format. Regarding the JTS limitation,
geometries have to be in GML 2.0 format to be validated and analyzed for further
operations.

The aforementioned GmlReader class reads the elements differently based on
their types, i.e., tag names. If the element is a valid GML geometry, the function
creates the corresponding geometry, using JTS constructors. Otherwise, the match-
ing error message will be shown. For instance, if a polygon does not have any outer
ring or if the coordinates of a ring do not shape a closed ring, an error will be thrown.

Now, the geometries are ready to be processed in geometric operations, like:

e checking two geometries whether they intersect each other,
e finding the symmetric distance of two geometries, and

e getting the number of inner rings of a polygon.
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These operations are done using the JTS functions. The output could be either in
any XML Schema (XSD) data types such as integer, boolean, string, and URI or
GML Geometry. The XSD type are equivalent to the BaseX defined data types.
For example, the primitive data types boolean, integer, and string are represented
in BaseX as the classes Bln, Str, and Int, respectively. In addition, the Geometry
type which is the output of functions like intersection, union, and difference of two
geometries, must be returned as an element in the abstract node type (ANode) to
be in compliance with the specification. Having the output geometries in GML for-
mat, GMLWriter function converts them first to a string, using JTS GmlWriter and
builds a database node (DBNode) hereafter. Considering the point that DBNode
extends ANode, the output node is sent to the GUI and is shown as a GML element,
expressing the geometric result.

Now, it is time to discuss the query performance that seems not satisfying.
Having commonly huge geospatial data, we encounter serious performance problems.
The common solution is an indexing algorithm designed to improve efficiency. Since
the geospatial data is a written form of geometries positioned in the space, an
indexing structure should be designed considering the positions. In the following
sections, we discuss an indexing approach and its influence on performance compared
to querying without using any geospatial index.

4.2 Geospatial Index in BaseX

To enhance the geospatial query time in BaseX, we discuss an index structure. This
index avoids processing the whole database when partial checking of the file would be
enough. For this purpose, a bounding box is computed for each geometry by which
an efficient filtering can be applied. For example, if we want to find the objects within
a specific geometry, examining just the area near to this geometry is adequate. If
two geometries have intersecting bounding boxes, they might intersect each other
and have to be checked whether they fulfill the query condition. Otherwise, they will
not have any contact and there is no need to check them. This approach, to which
we will refer as two-step filtering in the following, decreases the number of scanned
geometries and consequently gives the better run-time. The two step filtering is
clarified as follows:

1. finding the geometries which their bounding box intersect with the bounding
box of query area, and

2. checking the selected geometries against the query condition.

Among the spatial index structures discussed in Section 2.3, JTS supports the
STR-tree and Quad-tree. Davis [24] discussed that STR-tree in contrast with Quad-
tree cannot be updated after the generation. However, we choose the STR-tree since
it fits our approach and application as we discussed in Section 2.4. As mentioned
before, STR-tree has the basic structure of R-Tree with the improved performance.
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The index tree, holding the bounding boxes in inner nodes and geometries in leaves,
is made once when the spatial index for the database is requested. Then, this
structure is stored in a file on disk. This process is illustrated in Figure 16. Each
time the index is requested, the file is read into main memory and will be kept
there for future requests. At the end, the two step filtering is executed. It should
be mentioned that only the following queries would benefit from this index. The
definitions of these functions are provided in EXPath Geo Module specification.

e intersects (geometryl, geometry?2)
e within (geometryl, geometry?2)

e contains (geometryl, geometry2)
e overlaps (geometryl, geometry2)
e crosses (geometryl, geometry?2)

e touches (geometryl, geometry?2)

The geospatial index structure is involved both in BaseX core and the basez-
api package. The main structure of index is added as a package in core, called
index.spatial. This package contains the index builder classes based on the core
index structure of BaseX. The class SpatialBuilder which extends IndexBuilder,
builds the index tree using pre-values instead of tag names to address the database
elements. Then, the JTS serializer writes this tree into a file, called STR-treelndex.

The other Geolndex class in the basex-api package extends QueryModule and
implements the method defined by the JTS STR-tree class for reading the index file
from hard disk into memory. Additionally, this class implements the filter method
to do the first step of two step filtering. The details of the index implementation is
described in the following section.

4.3 Index Functions Implementation

To add the geospatial index, we thought of two approaches. The first approach
implements new signature for the aforementioned functions in a new class. It means
that the index filter function is encoded directly in the existing geo functions. Then,
queries can be done with the new spatial function as in Code 8. In this query, the
function geo-index:intersects in the new namespace and signature applies the index
functionality inside the function. Therefore, we have two intersects functions.

Code 8: The geo function containing the index functions

import module namespace geo—index = "http://expath.org/ns/Geolndex";
let $a:= <gml:Polygon> ... </gml:Polygon>
return geo—index:intersects("DB", $a)

Since having two functions with the same name and functionality is redundant,
we introduce a new approach in which the filter function can be used in XQuery to
benefit from the index structure. A sample query of this approach in Code 9, filters
the geometries by the geo-index:filter function. Next, the geo:intersects function
of Geo Module is applied to the filtered geometries. To summarize, the former
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Figure 17: Using a Map to cache the input geometry: performance effect

approach does the whole process including the first step of filtering through the geo-
index:intersects function, while the latter uses the original geo:intersects function
together with geo-indez:filter which does the first step of filtering.

Code 9: The geo function used together with the index function

import module namespace geo—index = "http://expath.org/ns/Geolndex"”;
import module namespace geo = "http://expath.org/ns/Geo";
declare namespace gml="http://www.opengis.net/gml”;
let $a:= <gml:Polygon>
<gml:outerBoundaryls>
<gml:LinearRing>
<gml:coordinates>
3.9,50.6 6,52.8 4.5,52.8 3.9,50.6
</gml:coordinates>
</gml:LinearRing>
</gml:outerBoundaryls>
</gml:Polygon>
return ( geo—index: filter ("DB", $a)[geo:intersects( $%$a, .)])

The negative point about the second approach is that the input polygon, like polygon
$a in Code 9, is read, parsed, and created every time that the spatial function, here
intersects, is called in the for loop, even though it is the same fixed object. Since,
this causes redundancy and consumes a considerable amount of time, we use a hash
map to cache the fixed input and prevent the further redundant readings. This will
dramatically reduce the query time, as shown in Figure 17.

Figure 17 demonstrates the time consumed by different queries to read the single
input geometry with or without caching. It could be seen that when no map is used,
as the number of results goes higher more time is taken. In contrast, by caching
the single input reading time remains constant, since the input geometry is read
once. In other words, without caching the input geometry will be read each time
the function geo:intersects is called, as it is one of the input arguments. In the next
section, we assess the performance issues related to the geospatial index.
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4.4 Evaluation and Improvement

There is no need to emphasize the importance of role that indexing plays in the
query time and performance improvement. Here, we use real-world data to observe
the effect of currently implemented geospatial index, followed by in-depth looking
at the implementation from other perspectives. The aim is to find ways in order to
improve performance. This data is provided by University of Twente, Department
of Geoinformation Processing and holds some real information on the earth in GML
2.0 format. The original file is based on one of the Netherlands coordinate system
(RD/NAP Amersfoort RD New) and is around 133.3 MB including 12773 polygons
inside 11886 multipolygons. We run different queries on this data with and without
geospatial index to see time consumption dependency on the index structure.

Since queries have various number of results, we can see the trend changes in
regards to the number of outputs. To start with, we take a look at the effect on
index utilization in queries in comparison with queries using no geospatial index.
Figure 18 represents the effectiveness of index utilization. As shown in Figure 18,
when geospatial index is not used, the query time remains constant for every query
regardless of the number of results. As we discussed in Section 4.2, this is due to the
fact that the whole file is scanned and analyzed for each query. In contrast, queries
using geospatial index relatively take more time as the number of output objects
goes higher. It confirms that the filtering approach is going in the right direction,
but the performance still is not satisfying. Thus, we need to investigate more to
improve it.

By monitoring the times consumed by different parts of a query, we discovered
that JTS GMLReader functions take considerable amount of time according to the
Figure 19. This figure depicts that the Reader consumes nearly 30% of the whole
query time. JTS GMLReader operates this part that reads the geometries from GML
and converts them to JTS geometries. Regarding the geometry reading process by
JTS, shown in Figure 20(a), it seems that the three steps serializing the XML,
converting it to string, and constructing geometries by JTS can be eliminated and
directly parsing approach might decline the query time. Thus, we implement a
custom GML reader class to immediately parse the GML elements into the JTS
geometries (see Figure 20(b)). To assess the time efficiency, a set of queries are
tested and the results are presented in Figure 21. As it was supposed, reading time
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drastically reduced by use of the new reader functions, although both have increasing
trend proportional to the number of outputs.

A deeper look at the different parts of a query will be beneficial to find the parts
where need to be improved. Suppose we run the query below:

let $a:= <gml:Polygon> ... </gml:Polygon>
return ( geo—index: filter ("DB", $a) [geo:intersects( . , $a)]).

The total query time will be divided into the following parts:

1. reading the input geometry $a,
2. filtering the geometries using filter function by pre values,

3. reading the filtered geometries from the database using selected pre values,
and

4. applying intersects operation on the pair of input geometry and each selected
geometry.

To see how each part influences the performance, we examine them separately.
Figure 22 shows the times taken by the above-mentioned actions. It could be seen
that the biggest amount of time is spent reading the geometries. Even reading the
single input geometry seems to be expensive. Hence, the reading function should be
observed more in detail.

We have used the Java profiling to get more precise information. The first few
methods in profile output with the highest percentage of time occupation, ordered
from the most-used to the least-used, are listed in Table 3. As the profile output
in Table 3 indicates, the split function calls consume the greatest amount of time.
Besides, createPolygon and geo functions used in GmlReader class are expensive.
Therefore, these functions should be the focuse of performance tuning. Since the
split function has the most frequent call, we discard it in favor of better performance.
This function is used to divide the string value of coordinate tag regarding the
delimiters to make coordinate pairs. We replaced it with a piece of code to parse
this string. A coordinate value in GML 2.0 can include different points separated
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rank self accum count method

6.95% 6.95% 94  org.basex.util. Token.split

5.33% 12.28% 72 org.expath.ns.GmlReader.createPolygon
4.59% 16.86% 62  org.basex.util.Token.split

4.22% 21.08% 57 org.basex.query.func.JavaModuleFunc.eval
3.55% 24.63% 48 org.expath.ns.Geo.geo

3.18% 27.81% 43  org.basex.util.Token.split

3.03% 30.84% 41 org.basex.util. Token.split

2.96% 33.80% 40  org.basex.util.Token.split

2.74% 36.54% 37 org.expath.ns.Geo.geo

© 00 1O Ul W N

Table 3: Java profiling output for the BaseX Geo Module
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with a space. Each point in a coordinate has two dimensions X and Y separated
with a comma. Code 10 shows an example of the GML 2.0 coordinate. Based on
this format, the new code reads the coordinate string and acts based on the position
and type of delimiters and numbers. Therefore, the coordinate pairs are constructed
from a valid string. Otherwise, an error message will be shown. Figure 23 represents
the effect of removing the split function on the query times. This figure indicates
that this effect grows as the number of results gets bigger.

Code 10: An example of GML 2.0 coordinate

<gml:coordinates>
3.9,50.6 6,52.8 4.5,52.8 3.9,50.6
</gml:coordinates>

In addition to the split function, we omit the Z values in parsing process, since
the Z value is ignored with the geospatial functions. It means that it is useless to
read this value. It can be considered as a limitation of GML 2.0, which is improved
in GML 3.0. Not surprisingly, excluding the Z values from the parsing process
declines the query time that is displayed in Figure 24. This effect is minor in the
smaller number of results and is more obvious with more output numbers.

Up to this point we have tried various ways to decrease the query times in the Geo
Module. Further attempts could be done following the aforementioned Java profiling
list (Table 3), if the implementation will be continued in the current direction.

4.5 Conclusion

In this Section, we discussed the Geo Module implementation details and assessment
in BaseX, which provides a set of geometric functions based on the EXPath Geo
Module specification. This module employs the JTS library to compute the geo-
metric operations. To enhance the performance, the JTS STR-tree index structure
is added that accelerates the execution time of queries such as intersects, within,
inside, and touches. This is done by applying a filtering in the STR-tree structure
and consequently reducing the number of processes in the database. Besides the
index tree, a GML Reader class is developed to parse the GML elements directly
regarding the inefficiency in JTS GMLReader. Although the performance is con-
vincing, there is room for improvements. For example, the functions split, geo, and
createPolygon can be modified in favor of better performance.
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5 BaseX and MongoDB

An introduction of MongoDB geospatial features is provided before in Section 3.3.1.
In this section, we will have a more-detailed overview of this functionality and a com-
parison between BaseX and MongoDB. However these two systems follow distinct
approaches, it would be beneficial to review MongoDB as a rather new, recently
developed, and widely used database system. MongoDB is among the few NoSQL
systems providing geospatial features. Here, we will mainly see differences between
these systems, particularly in performance of the same features. This comparison
empowers us to improve the geospatial querying performance in BaseX.

As we discussed in Section 3.3.1, geospatial data can be represented in Mongo-
DB either as planar or spherical maps. Since the earth is a spherical globe, the
geospatial calculations on planar maps are only an approximation [62, 69]. As an
example, the measurement of distances in planar maps are accurate only in a small
region. It means that the spherical maps are the better representation when the
calculations are expected as real ones on the earth. As our goal is to assess some
geospatial features of MongoDB and compare it with BaseX Geo Module, we focus
merely on the spherical approach. Correspondingly, WGS84 is used instead of legacy
coordinate pairs to express the spherical maps.

Code 11: A GeoJSON file containing a FeatureCollection object

"type”: "FeatureCollection”,
"features”: |
{
"type"”: " Feature”,
"geometry”: {
"type": "Point",
"coordinates”: [102.0, 0.5]
}

roperties”: {
"prop0": "valueQ"
}
.
{
"type"”: " Feature"”,
"geometry”: {
"type”: "LineString",
"coordinates”: |
[102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0]
]
¥
"properties”: {
"propl”: 0.0,
"prop0”: "valueQ"
}
}
]
¥

Geospatial operators of MongoDB for spherical data support the GeoJSON [17]
format. GeoJSON is a human-readable encoding format for representing the geo-
graphical features using JSON standard. It consists of an object which describes
a geometry, Feature, or collection of Features. The type of geometries must be
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one of these types: Point, LineString, Polygon, MultiPoint, MultiLineString, Multi-
Polygon, and GeometryCollection. A Feature must have members with the names
geometry and properties. A feature collection is an object with the type Feature-
Collection which must have a member with the name features. Code 11 is an instance
GeoJSON file with a FeatureCollection object.

The version 2.4 of MongoDB, which we have used for our testings, supports
only three geometry types Point, LineString, and Polygon®. As mentioned in Sec-
tion 3.3.1, a geospatial query in MongoDB can use geolntersects, geo Within, near,
and nearSphere operators. In addition, there are geometry specifiers to define geo-
metries in query conditions of these operators. For instance, the $center and $center-
Sphere are specifiers for a circle area in planar and spherical maps on which the user
intends to do the query. Then, the user can find all geometries within a determined
circular area. Another example is the $mazDistance specifier that determines the
maximum distance from a point in order to find geometries within this particular
distance. Geometry specifires are limited to, $geometry, $mazxDistance, $center,
$centerSphere, $box, and $polygon. An example demonstrating the usage of the
specifiers in a query is:

db.<collection>.find( { <location field> :

{ $geoWithin
{ $centerSphere
[ [ <>, <y> ] , <radius> ] }
Py

In the following sections, we will discuss the query performance of these two
databases. In Section 5.1, we analyze specific test queries. Then, the assessment
continues utilizing the indexing structure in Section 5.2. Later, the update func-
tionality of databases is investigated in Section 5.3. In Section 5.4 we explain an
experimental approach to query a database by MongoDB via BaseX. A discussion
about this approach is then introduced in Section 5.5. Finally, Section 5.6 contains
the conclusion and further work.

5.1 Querying the Databases

To analyze the behavior of databases, designing the same test cases and evaluating
the run-times is the most straight-forward approach. Based on the MongoDB geo-
spatial features and properties, the Netherlands test dataset must be changed to be
imported and tested. A brief explanation of the changes is provided here to clarify
the rules and limitations. The main change was to either remove multipolygon from
the dataset or transforming them to a set of distinct polygons, since multipolygon
is not supported in the version of MongoDB that we have used. Besides, the coor-
dinate system is converted to WGS84. At the end, there are 12773 polygons and
no multipolygons in the data file. Since the geometries are changed and the results
would be different, we repeat all queries with the new dataset in BaseX.

To start with, the GeoJSON file containing the geometries is imported into Mon-
goDB. This can be done using Java API or Mongo Shell with appropriate mongo-
import command. There are limitations to consider while importing a GeoJSON file
in MongoDB. The main one is the document size limitation in a collection. Docu-
ment and collection are two concepts in MongoDB that correspond to a table and

5The version 2.6 adds support for MultiPoint, MultiLineString, MultiPolygon, and Geometry-
Collection.
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CPU RAM | Hard disk | OS Bits

Intel Core 13-2310M 2.10GHz | 4 GB 80 GB Ubuntu 12.04.5 LTS 64

Table 4: Hardware architecture used for testing

a record in this table, respectively. A collection can have one or more documents
and a document is a set of key-values. A database contains one or more collec-
tions. To successfully import a document into a collection, it should be smaller than
16MB. Since it is common to have large geometries in real-world geographic data
files, this limitation can be a problem. Another limitation is that the z coordinate
is not supported in MongoDB. When a coordinate contains z dimension, although
those geometries are not processed, no error message is shown during the import
process and query. MultiPoint, MultiLineString, and MultiPolygon, which are not
supported in the version 2.4 of MongoDB, are also skipped in queries without any
error message.

The above-mentioned size limitation made us change the file structure again.
When the file structure was in the form of Code 11, an error message regarding
the size limitation was thrown. We changed the GeoJSON file structure to contain
individual features as Code 12 in order to solve this problem.

Code 12: A GeoJSON file restructured regarding the size limitation

{
"type"”: " Feature"”,
"geometry”: {...},
"properties”: {...}
}
{
"type"”: "Feature",
"geometry”: {...},
"properties”: {...}
}

After importing the file, we examined the common features, i.e., intersection, within
functionalities, in both databases. Each query is performed in a client-server archi-
tecture in both databases, using scripts to execute it 100 times. The time presented
for each query is the average of all total internal times, excluding the first one. The
results of queries have been read into the memory and have not been serialized and
written out. All queries in this section have been performed with the version 7.8 of
BaseX and version 2.4 of MongoDB. The system architecture that have been used
are shown in Table 4.

The queries in Code 13 and Code 14 find the intersecting geometries from the
Netherlands’ dataset with the given polygon in BaseX and MongoDB, respectively.
The polygon coordinates are determined for different queries in the following way. At
first, the maximum and minimum coordinates are found in the dataset. After that,
we generate different input polygons in regard to these boundaries. The polygons
coordinate are altered such that the number of results differs in each query.

Code 13: Example query of the intersects function in BaseX

import module namespace geo = "http://expath.org/ns/Geo" ;
declare namespace gml="http://www.opengis.net/gml";
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let $a:= <gml:Polygon>
<gml:outerBoundaryls>
<gml:LinearRing>
<gml:coordinates>
6,52.6 6.1,52.6 6.1,53 6,53 6,52.6
</gml:coordinates>
</gml:LinearRing>
</gml:outerBoundaryls>
</gml:Polygon>
for $b in //gml:Polygon
return if (geo:intersects( $a, $b)) then $b else ()

Code 14: Example query of the intersects function in MongoDB

db.places.find( { geometry
{ $geolntersects
{ $geometry
{ type : "Polygon”
coordinates:[[[6,52.6],[6.1,52.6],
[6.1,53],[6,53],[6,52.6]]]
Fror)

Similar queries are designed to check the other functions. Here, we skip the
queries and directly go to the results. Before, we briefly take a look at the MongoDB
profiler through the $explain operator either in the forms:

db.collection.find()._addSpecial( "$explain”, 1)
db.collection.find( { $query: {}, $explain: 1 } )

or

db.collection.find().explain(),

which displays the profile of current query specified in the find function. This can
also be done for any operation by querying the system.profile collection. Below the
profile of a sample query is shown,

"cursor” : "BasicCursor",
"isMultiKey” : false,

"n" : 2756,
"nscannedObjects” : 12773,
"nscanned” : 12773,

"millis” : 43907,

"server” : "MongoServer"

In the provided information, number of the results and the query time is in-
cluded in n and millis elements, respectively. The item cursor specifies the type of
cursor used by the operation. Here, BasicCursor indicates that the query is merely
performing a normal scan to find the results. This typical cursor reads the docu-
ments in natural order. That is, no index is used for this operation and the whole
data is scanned in the original order. If a geospatial index is used, the cursor type
will change. The value n reflects the number of geometries that match the query
condition, i.e., the number of items on the cursor. The item nscanned is the number
of scanned documents for this operation when no index is used, or scanned index
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entry in the range when an index is used. The item nscannedObjects is the number
of scanned documents in this query to obtain the results. Queries in which an index
structure is not used, as in the above sample, will have equal value for these two
numbers. Otherwise, nscannedObjects may be lower, as shown in the query plan of
Code 15 which uses a geospatial index. In other words, the following inequalities
always hold:

nscanned > nscannedQObjects > n.

Of course, the most optimal state is where nscanned = nscannedObjects = n.

Code 15: Query profile in MongoDB when the related query uses geospatial index

"cursor” : "S2Cursor”,

"isMultiKey" : true,
"n" : 2756,

"nscannedObjects” : 3370,
"nscanned” : 36941,

As expected and therefore not shown here, queries of intersects and within func-
tions without index, all have query times that are more or less the same in both
databases, since the whole data is scanned. This is also obvious from the following
query plan in MongoDB, which specifies the cursor type, number of the scanned
index keys (nscanned), and number of the scanned documents (nscannedObjects):

"n" . 12773,

"nscannedObjects” : 12773,
"nscanned” : 12773,

Until now, the sample queries are applied to the databases without using any
index. In the following section, we measure the running time again by applying
the geospatial index. In this way, we also cover near and nearSphere queries in
MongoDB that definitely need the geospatial index.

5.2 Indexing in the Databases

The assessment process is continued by applying the geospatial index. In MongoDB,
there are two choices for using geospatial index, 2d for data expressed in legacy
coordinate pairs and 2dsphere for both GeoJSON data objects and legacy coordinate
pairs. We use 2dsphere which fits the choice of spherical maps via the following shell
command,

db. Collection .ensurelndex ({geometry:"2dsphere” })

The same step is also taken in BaseX. Running the same queries again using a
geospatial index, supposedly gives declined query times and an upward trend in
performance as the number of results go higher in both databases (see Figure 25).
As explained in Section 4, index is applied through the filter function in BaseX while
MongoDB follows another approach. MongoDB applies the index automatically af-
ter executing the above-mentioned command and there is no need to change the
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Figure 25: Query time of intersect operation with geospatial index

queries in general. Figure 26 illustrates how BaseX and MongoDB perform when
running the two main geospatial functions, within (Figure 26(a)) and intersect (Fig-
ure 26(b)). For each function, the average time of eight different queries is shown
which are executed with and without index. For the intersect function, we calcu-
lated the average for the same results shown in Figure 25 and for the within function,
we have chosen another queries with the range of results from 64 to 1871 numbers.
Not surprisingly, using the index structure improves the performance while queries
without using the geospatial index performance remains stable. As it can be seen
in this figure, in both functions BaseX outperforms MongoDB.

The next widely used type of query is finding the near places or geometries
up to a distance from a specific point. It could be also expressed as finding the
geometries inside a circle with the distance value as the radius length. This feature
is provided in MongoDB via $near and $nearSphere operators, which simply get
the reference point and the distance and hereafter returns the whole geometries in
the specified distance from the point. Both near operators need a geospatial index,
either 2d or 2dsphere. A specific distance in meter is defined as a condition to filter
those geometries within this area. In Code 16, we provide a sample query of the
$nearSphere operator.

Code 16: Sample query using $nearSphere in MongoDB

db.collection.find ({{geometry:
{$nearSphere:
{$geometry:
{type:" Point", coordinates:[4.5,51.95]},
$maxDistance : 100

13989

BaseX Geo Module currently provides this feature via distance or combination of
buffer and within functions. In both cases, if the coordinate system in which the
data is provided is a projected coordinate system, the distance can be specified in
meter or any other metric unit. In a projected coordinate system, all the areas,
lengths, and angels are defined on a flat two-dimensional space. In such a system,
the user is provided with this near feature in BaseX by using the above-mentioned
functions as in Code 17.
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Figure 27: Having the near feature for WGS84 data using transformation in BaseX

Code 17: Sample query to the near feature in BaseX

import module namespace geo = "http://expath.org/ns/Geo";
declare namespace gml="http://www.opengis.net/gml";
let $a:= <gml:Point>

<gml:coordinates>

4.5,51.95

</gml:coordinates>

</gml:Point>

for $b in //gml:Polygon
return if (geo:distance( $a, $b) le 500) then $b else ()

For the data provided in a geographic coordinate system, calculations do not
work with the metric values. A geographic coordinate system, such as WGS84,
defines the areas and locations in a three-dimensional spherical space. Since there
is not a specific unit for the current Geo Module functions, the distance function
interprets the input distance in the coordinate system of data. For example, the
Netherlands sample dataset is in a metric coordinate system. Hence, the distance
value in queries can be specified in meters.

The aforementioned near feature as a common use case is available in BaseX only
for metric coordinate systems. To provide this feature also for geographic systems
via the current geo functions, we need to convert the geographic coordinates to
metric ones. In this way, we convert the specified input geometry in WGS84 to
a metric system. Then, we compute the buffer of converted geometry up to the
input distance in the same metric system and convert the buffer back to the original
geographic coordinate system. A buffer of geometry is an identified region within a
specific distance of the geometry. At the end, we find the all geometries within the
buffer in geographic coordinate system. This approach benefits from the geospatial
index structure via the within function while the approach with the distance function
do not utilize the geospatial index. This process is illustrated in Figure 27. This
procedure is expressed as below, using the buffer and within functions and should
return the same result as the previous query,

within(geometry, transform(buffer(
transform (myPoint_in_.wgs84 , other_metric_cs), 500),wgs84))
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Figure 28: Query time of the near feature

Having the same use cases, we have tested this feature in both databases, with
the run-times shown in Figure 28. BaseX uses the distance function while $near-
Sphere operator finds the geometries in MongoDB. MongoDB outperforms BaseX
with smaller number of results. The query times and the number of results are di-
rectly proportional in MongoDB, since the geospatial index is used and both changes
accompany each other. BaseX does not use the geospatial index and consequently
returns every result more or less in the same time. In the real-world applications,
finding the nearby objects or places in closer surrounding areas are highly applica-
ble and demanded. Therefore, having this functionality in a better performance is
advantageous.

As mentioned in Section 4.2, BaseX records the index structure in a file and
reads it back into main memory when the geospatial index is required. A point that
we should contemplate is to include the time for index opening in query times, since
in memory management the index file might be removed from the memory and read
back again. This time is not counted in the presented charts.

5.3 Database Update

Updating a database as a significant interaction supplied by the database system
generally comprises three different operations: insert, delete, and modify. In ad-
dition to the whole issues related to the database update on disk and memory
management, reconstructing the indexes is of great importance. That is, since the
index is constructed based on the old database state, the updated database needs a
new index.

Currently in BaseX, updating is not applied to the geospatial index after the
database update operations. It means that the STR-tree does not get updated
automatically and the geospatial index has to be rebuilt manually, which causes
redundant constructions.

Considering the manual update of the geospatial index in BaseX, the time of
index creation plus reopening the index file into the main memory are overhead
which take a huge amount of total time (see Figure 29). Including these times in
evaluations, not surprisingly drops the performance of update operations in BaseX
compared to MongoDB. However, each database follows a different approach. One
provides a static index structure optimized for the data with no or very few updates
and the other provides a dynamic index structure. Besides implementing a dynamic
geospatial index structure, accessing MongoDB geospatial features and index struc-
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ture through BaseX can be an alternative approach. Additionally, we can benefit
the near feature of MongoDB for small number of results through this way, since
this feature is frequently requested to find a few entities around a particular point.
In the following section, we discuss this method.

5.4 Querying by MongoDB via BaseX

Up to this point, we have investigated both BaseX and MongoDB to gain some
improvement ideas for BaseX. We go further in this way by querying the data
with MongoDB through BaseX. A conceivable goal for this approach is supplying
the missing features or make the features with better performance in MongoDB
accessible from BaseX. We test this approach by connecting to MongoDB via BaseX.
Then, the provided queries in MongoDB syntax are executed by MongoDB and
the results are shown through BaseX. For the missing features, this would add a
functionality to BaseX. But, for the common queries we should evaluate the new
query times to see how the performance changes. The test is implemented by sending
the query to the MongoDB server and receiving the results in a test function that call
some other private functions. The test function can be called in XQuery, defining
the arbitrary arguments. For instance, for the near feature the center point and a
distance value must be specified. Since MongoDB gives the result in GeoJSON, they
must be converted to XML in BaseX. To test the near feature, we run queries with
$nearSphere operator. As mentioned the closer distances and consequently smaller
number of surrounding objects are of great interest. Searching for the five hundred
restaurants around a house rarely happens, while finding the ten nearest ones is
more requested. The test performance depicts that this approach provides better
performance of this feature than the way BaseX does (see Figure 30). The constant
performance trend in BaseX is due to the absence of geospatial index. Hence, the
user can benefit from this functionality in MongoDB through BaseX.

This process is done for the update operations, such that the update query
modifies the database in MongoDB. Update operations do not return any objects and
there is no need to do any conversion from JSON to XML. Considering the geospatial
index update, update queries run-time indicate improvements in performance. It
means that the performance improvement is significant in regards to the fact that
MongoDB updates the index structure. Correspondingly, it should be decided to
continue the querying either in MongoDB or in BaseX after repeating the update
queries and rebuilding the index structure.
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5.5 Discussion

Throughout this section, we investigated two strategies to efficiently process the
geospatial data in BaseX. Based on these investigations, here we will discuss the
previously-mentioned approaches of the geospatial processing in BaseX and cover
the pros and cons of the available approaches, particularly the most recent one in
Section 5.4.

To start with, we suppose that a user has a geospatial dataset in GML and they
would like to work in this format in BaseX, since their general requirements are met
by BaseX. Based on our examinations, there are some queries in which BaseX is not
able to cover them or cannot provide some features in a proper time. It means, those
cases either are not covered, like updating the index structure or are covered with an
apparently poor performance in comparison with the other similar query times, such
as the near feature. Therefore, geospatial queries such as intersects or within, can
be applied efficiently while some other like near and update, cannot. Furthermore,
regarding to our assumption, some functionality of BaseX convinces the user to work
with GML. We call them GML-related features. We consider these co-called GML-
related features in our discussion, as they might influence the geospatial processing
approach that will be preferred.

Table 5 summarizes the statement above. MongoDB through BaseX in this table
means that BaseX connects to MongoDB to benefit by the features which are not
available or available with poor performance in BaseX, as discussed in Section 5.4.
GML-related features points the aforementioned features which are supposed here to
be satisfying enough for the user, indicated with the notation “+”. This assumption
is made in order to concentrate on the evaluation of those cases in which the user
choose to use BaseX and we try to cover the missing geospatial features. With “++7,
we mean that option is very efficient.

As is expressed in Table 5, the geospatial queries like intersects and within are
working with an acceptable performance in BaseX. On the other hand, for the near
and update queries connecting to MongoDB seems to be the appropriate approach.
Hence, a fast conclusion would be to have the advantage of using MongoDB through
BaseX. However, the synchronization of the database instance in BaseX and the
database instance in MongoDB should be precisely examined. If the user intends to
modify the database, which also means the modification of index without any fur-
ther querying regarding the changes, the faster strategy is to update the MongoDB
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Tasks BaseX | MongoDB through BaseX
GML-related Queries +

Geospatial Queries, +

like intersects/within

The near Query ++

DB Update Queries ++

Table 5: The comparison of two strategies; using BaseX or connect to MongoDB
via BaseX

Scenarios What to do?
Needs a intersects/within query Using BaseX only
and no update and no near query
Needs a near query and no update | Using BaseX and MongoDB together
Needs modifications in the database | Using MongoDB only

Table 6: Possible scenarios and appropriate actions suggested to take

instance, while the database instance in BaseX remains untouched. But, in case
that the user wants to do further querying based on the changes, this approach is
not optimized.

One way to discard the above-mentioned problem could be limiting the user to do
all geospatial queries regarding the index in MongoDB and use BaseX just as a con-
nector. However, as we see in Table 5, doing some queries in BaseX is more efficient
and connecting to MongoDB might be a disadvantage, since this adds at least the
connection time to the query time. Moreover, the complete dependency of BaseX on
MongoDB for all geospatial queries would be too much and disadvantageous, while
each system is designed for different requirements and follow various goals. Thus, it
will be more appropriate to provide the user with both possibilities.

Table 6 summarizes the sample scenarios that could happen based on the existing
features to process the geospatial data. In addition, this table shows the relevant
and appropriate actions the user can apply as an efficient strategy toward her/his
goal.

The first scenario in Table 6 is the use case in which the BaseX Geo Module
functions and index structure fulfills all the requirements and there is no need for
further queries, while the database remains unchanged. In this case, everything can
be done by BaseX. In the second scenario of this table, the user needs the near
feature as a missing one, based on the untouched state of the database. For this
case, there are instances of both BaseX and MongoDB and the database is created
in both instances. Then, the user can connect to MongoDB in order to get the result
of the near query easier and faster. It should be mentioned that the issues related to
the coordinate systems must be managed before applying the near query. The last
scenario mentioned in the table is the case in which the database will be updated
by MongoDB and the next queries are based on the new state of the database. In
this case, which BaseX does not provide a straightforward way, accessing MongoDB
update facilities and applying the subsequent queries in MongoDB hereafter is the
advantageous approach.
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5.6 Conclusion

In this section, we mainly concentrated on the geospatial features of MongoDB in
order to find ways to improve the BaseX Geo Module efficiency. We started with
the investigation of geospatial features to see the different viewpoints in MongoDB.
Based on the common features in both databases, the performance was represented
and explained with and without geospatial index, to see the influence of geospatial
index. Among the queries, finding the geometries within a specific distance, called
the near feature, is of a great importance, as a widely-used feature. MongoDB
provides this feature in both WGS84 for data on the earth as well as legacy coor-
dinate pairs, while BaseX supports only for the projected coordinate systems, since
geospatial functions in BaseX do spatial calculations on the flat space. To add the
support of data in WGS84 in BaseX, new functions should be implemented. Testing
this feature in both databases shows a better performance in MongoDB.

Besides, updating in both databases is discussed. Update in MongoDB im-
plicitly updates the index structure, while the geospatial index in BaseX must be
reconstructed. Therefore, query time severely increases considering the time con-
sumed by index updating.

Since the performance of two functionalities, i.e., the near feature and updating,
are not satisfying in BaseX and MongoDB provides a faster way, we connect to
MongoDB and run these queries through BaseX. The results of the near feature by
this approach seem convincing enough to have this alternative way of querying in
BaseX. In addition, updating the database by MongoDB via BaseX is faster than
updating in BaseX. However, using this approach is controversial. The discussion
is in regards to the subsequent queries after the database modification. Indeed, the
changes happen in MongoDB and the database in BaseX remains untouched. There-
fore, further querying based on the new changes is possible merely in MongoDB. In
case that the next geospatial queries need to be done in BaseX, this way will not
worth trying, because the whole update and index reconstruction process must be
repeated in BaseX. The approach sets the limitation for the use cases in which the
database will be updated, to do the geospatial querying completely in MongoDB.

o6



6 Future Work

As a result of this work, BaseX is now capable of processing geospatial data. How-
ever, there is still room for future improvements. In particular, the storage and
indexing are at the center of attention. Right now, the whole indexing tree is stored
in the main memory which results in poor I/O efficiency. One of the first ideas is to
bring some parts of the tree, which are addressed repeatedly, into RAM. Regarding
the indexing, an interesting future work is to practically compare the current STR-
tree implementation with other indexing trees in the existence of different kinds of
geospatial data. For example, a promising research would be the comparison be-
tween STR-tree and Quad-tree having dynamic datasets. Moreover, the support of
higher versions of GML and other geospatial data formats alike, could be a topic to
work on.

In this thesis, we have considered MongoDB as an alternative for querying and
indexing. A feasible improvement would be the implementation of a flexible interface
for this database. As we discussed in Section 5.6, there would be an inconsistency
between the geospatial data and indexing in BaseX and the simultaneously indexed
data in MongoDB. A future improvement is to implement a module to give the user
the whole control over these two possibilities. Besides, we can follow this idea by
connection to the other well-known databases.
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7 Summary

In this thesis, we discussed several topics related to geospatial data processing. As
main focus, we examined issues related to geospatial features in the native XML
database BaseX.

Knowing the geospatial properties and definitions, the first topic that we covered
as the most important one was the geospatial indexing structure. We chose some
major indexing structures and their variations, which are studied broadly in the
literature. Numerous structures are introduced later based on the few ones, such as
KD-tree or R-tree. We explained each algorithm together with its pros and cons by
collecting information from various sources. This explanation provides a perspective
of the different indexing structures for future developments in BaseX. As stated in
Section 2.3, each index structure is developed to meet a particular requirement. For
example, dynamic variants of the R-tree are appropriate for the data which changes
frequently. Consequently, a suitable index structure should be chosen based on
the system properties and features. However there are numerous publications on
this topic, choosing and implementing an index structure is not straightforward.
Since the R-tree is a widely used structure, we chose an advanced static variant of
the R-tree, STR-tree, to implement a experimental index structure in BaseX. The
implementation that is integrated into BaseX is from a well-known open-source API,
JTS.

Another topic we discussed in this thesis is the related areas to focus when
providing geospatial features. Storage and querying are the main topics and we in-
troduced some proposed or implemented ideas. Besides, we explained the geospatial
features in some database systems to show how the implemented ideas work.

The Geo Module implementation in BaseX as our focus starts with geospatial
functions and proceeds with adding the STR-tree as the index structure. The eval-
uations demonstrate how the index implementation and other optimizations helped
us to reach a better performance.

While studying geospatial features of MongoDB, we found that in some cases
BaseX outperforms MongoDB and vice-versa. Hence, we ran the queries in which
MongoDB provides better performance through a driver. We represented the evalu-
ations that are convincing to follow this approach as a parallel way. As we discussed
in Section 6, the BaseX Geo Module can be expanded by adding the support of other
geospatial data formats and an index structure for dynamic data like the Quad-tree.
Additionally, the idea of connecting to MongoDB can be integrated into BaseX to
benefit from the specific index structure and features for GeoJSON.
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