
Pushing XML Main Memory Databases to their Limits
Christian Grün

Database & Information Systems Group
University of Konstanz, Germany

christian.gruen@uni-konstanz.de

The wide distribution of XML documents and the standardization of the Query
languages XPath and XQuery have led to a wide variation of XML database im-
plementations. Yet the efficient processing of really large XML documents is still
supported by just a few products such as e.g. MonetDB/XQuery as open-source so-
lution [1] or X-Hive as commercial product [2]. Following the main memory and
relational encoding approach of MonetDB/XQuery, we analyse how far we can
push main memory approaches to yield usable real-time query results for XPath
requests. Moreover, we apply memory efficient value indexes to reach an order-of-
magnitude performance improvement for queries with predicate tests. The results
of our implementation prototype are quite promising, surpassing the response
times of any other implementation we tried so far.

1 Introduction

The XML Standard opens way to a wide range of text-processing facilities such as a unified exchange
of text documents, the support of hierarchically structured data or a stream-based distribution and
parsing of textual information. Many XML documents are still small, compared to the size of datasets
which are stored in relational databases. However, XML is increasingly chosen as a storage format for
extensive and complex text data. Popular examples are the DBLP database for scientific publications
[3], the protein database SwissProt [4] or the Wikipedia [5].

Parsers like e.g. Galax [6] or Saxon [7] use a sequential access to XML documents and build a tempo-
rary main memory tree structure to answer queries. This approach works well for small documents,
but the size of processable documents is limited; files with 100 or more MB get very slow or cause
problems, even on systems with well-equipped main memory. In the scope of our research, we deal
with the efficient storage and query of especially large XML documents. Files up to 13 GB have been
successfully processed and queried by BaseX, our prototype implementation. Despite all we still share
one aspect with parsers like Galax – we only work in main memory.

2 XML Mapping

Different data structures have been proposed to map XML documents into a more accessible struc-
ture. The most popular approach is to adopt the hierarchical structure of a document and rebuild it as
a main memory tree. This approach has been standardized as Document Object Model (DOM). In
most implementations, the tree nodes are implemented as specific data structures, referencing their
dependent nodes and providing further information on their type. The tree-like structure is the most
natural way of mapping XML documents as it can be easily accessed and modified, but it imposes
quite a number of restrictions:

• XPath axes such as descendant, ancestor, preceding and following need to be parsed recursively,
causing a bad runtime complexity

• the memory usage gets inacceptable for larger documents as each document node has its own
data structure and offers a lot of information that can be derived from other document nodes

• tree structures are usually accessed by the root node. Additional data structures are needed to
randomly access any nodes of the tree, causing additional memory overhead

An approach that has proven to be successful is the document storage in a relational encoding [8]. The
MonetDB/XQuery implementation is based on the XPath Accelerator [9]. The current encoding is
based on a Pre/Size/Level encoding, derived from the Pre and Post values. These values can be cre-
ated during a sequential parsing of the XML instance. For each opening tag and content node, a new
Pre value is assigned, and the Post value is assigned when a tag or node is closed (see Fig. 1).

The relational encoding of XML documents facilitates efficient access to the major XPath axes descen-
dant, ancestor, following and preceding. To comply with two principal affordances of the XPath
specification, namely the orderedness of context sets and the absence of duplicate nodes in the result
set, the Staircase Join algorithms were introduced [9], allowing a linear parsing of the major axes.

In our prototype we are working with a simple edge-based mapping, referencing the Pre and Parent
node to further accelerate ascending traversals. The Staircase Join algorithms have been slightly modi-
fied to work with the chosen encoding.

3 Data Structures

BaseX is completely designed as a main memory
application, so minimizing the memory consump-
tion of all data structures was highly relevant. The
core data of BaseX is the relationally encoded node
table in which all XML data is stored and refer-
enced. The node table for the XML document in
Figure 2 is shown Figure 3. The table assembles
the Pre and Parent value, the tag name or text
content, the node kind and optional attributes.
Tags & text contents, attribute names and attribute
values (so-called Tokens) are uniformly indexed in separate hash structures; the index entries are
referenced by integer values. The internal table representation, shown on the right in the figure, stores
all information as integer values and merges some attributes to save memory. The Parent value is
stored in an integer array, and the Pre value is implicitly given by the array position. The table fur-
ther stores the tag name or text content by its integer reference and shares its uppermost bit with the
node kind (0 for element, 1 for token). As a tag can have several attributes, the attributes are refer-
enced by two-dimensional arrays. Though, the attribute name and value use again only one integer,
sharing 10 and 22 bit; a nil reference is used when no attributes are given. The original values can be
efficiently processed and accessed via CPU-supported bit-shifting algorithms.

<db>
 <address id='add0'>
 <name title='Prof.'>Hack Hacklinson</name>
 <street>Alley Road 43</street>
 <city>0-62996 Chicago</city>
 </address>
 <address id='add1'>
 <name>Jack Johnson</name>
 <street>Pick St. 43</street>
 <city>4-23327 Phoenix</city>
 </address>
</db>

Figure 2: Sample XML document

Figure 1: XML document, Tree Representation, Pre/Post Table

A second data structure, the hash index, is basically an implementation of a linked list hash structure.
Similar to the node table, we flattened the index to work on simple integer arrays. The hash arrays are
all sized by a power of two, and the bitwise AND operator (&) cuts down the calculated hash values to
the array size; this approach works faster than conventional modulo (%) hash operations. Next, the
array size does not rely on the calculation of prime numbers, and the index can be quickly resized and
rehashed during the index creation.

Three arrays suffice to store all hash information
(see Figure 4). The TOKENS array references the
indexed tokens. The ENTRIES array references the
positions of the first tokens, and the BUCKET array
maps the linked list to an offset lookup. After a
hash value has been calculated for the input token
and trimmed to the array size, the ENTRIES array
returns the pointer to the TOKENS array. If the
pointer is nil, no token is stored; otherwise the to-
ken is compared to the input. If the comparison
fails, the BUCKET array points to the next TOKENS
offset or yields nil if no more tokens with the same
hash value exist.

Thanks to the optimizations, the main memory
representation of an XML files occupies only 0.8 to 2.3 the size of the original document on disk. As
indexes are used for all tokens anyway, the value index (which will be discussed in the next section)
just represents 12-18% of the main memory data structure.

4 Querying

BaseX can both be run as a command-line query tool and as a client interface, sending requests for
loading and querying documents to a server instance. The implemented XPath parser processes basic,
non-recursive queries, including all location steps, kind tests and predicates. Different algorithms are
chosen for queries with or without positional predicates, and some optimization steps are performed
to simplify and reformulate the XPath query.

The first rewriting step combines location steps that would otherwise be parsed separately. As an
example, the double slash (//) offers itself for being optimized. A query like //step is the abbreviated
writing for the query descendant-or-self::node()/child::step. Before the child step is evaluated, a

pre par token kind att attVal

0 0 db elem
1 1 address elem id add0
2 2 name elem title Prof.
3 3 Hack Hacklinson text
4 2 street elem
5 3 Alley Road 43 text
6 2 city elem
7 3 0-62996 Chicago text
8 1 address elem id add1
9 2 name elem
10 3 Jack Johnson text
11 2 street elem
12 3 Pick St. 43 text
13 2 city elem
14 3 4-23327 Phoenix text

id attVal

...0000 add0

...0001 Prof.

...0010 add1

id text

...0000 Hack Hacklinson

...0001 Alley Road 43

...0010 0-62996 Chicago

...0011 Jack Johnson

...0100 Pick St. 43

...0101 4-23327 Phoenix

par kind/token attribute

...0000 0.....0000 nil

...0001 0.....0001 0000...0000

...0010 0.....0010 0001...0001

...0011 1.....0000 nil

...0010 0.....0011 nil

...0011 1.....0001 nil

...0010 0.....0100 nil

...0011 1.....0010 nil

...0001 0.....0001 0000...0010

...0010 0.....0010 nil

...

id att

...0000 id

...0001 title

XML Document Mapping TagIndex

TextIndex

Node Table

AttNameIndex

AttValueIndex

id tag

...0000 db

...0001 address

...0010 name

...0011 street

...0100 city

Figure 3: Relational XML mapping (left), internal table representation in BaseX (right)

ArrayPos 0 1 2 3

TOKENS nil XML XPath XSLT

BUCKETS nil nil nil 1

ENTRIES nil 2 nil 3

�

�

�

�

 hashValue("XML") " 3

� ENTRIES [3] " 3

� TOKENS [3] = "XML" ? " false

� BUCKETS [3] " 1

� TOKENS [1] = "XML" ? " true

Figure 4: Sample XML document

large, intermediate result set is created, including all context nodes of a document. By merging this
step into a descendant step, the step traversal can be distinctly accelerated. A similar optimization
can be performed for self axes which can be pruned away in many cases. The implemented optimiza-
tions guarantee equivalent and correct result sets, but they cannot be applied to all queries, excluding
e.g. location steps with positional predicates.

The most powerful rewriting process includes the value index into the query. As indicated before, we
integrated a general value index for all text nodes and attribute values to speedup predicate selec-
tions. The index structure was enhanced with an inverted list, pointing to the token's Pre values.
When predicates with string matches are encountered, the input XPath query is rewritten to call the
value index. Descendant steps are converted to ancestor steps and vice versa. A simple query refor-
mulation is shown for the following example query: doc("doc.xml")//address[@id = "add0"]/

name. The string "add0" is first matched against the attribute value index. Next, a parent step is
added for the address tag, and the root node test is moved into a predicate. Finally, the name child
step is evaluated, yielding the final result set. The internal query reformulation can thus be repre-
sented as index::node()[attribute::id = "add0"]/parent::address[ancestor:root()]/child::name.

5 Performance

For our performance tests we used three XML instances: DBLP, Swissprot [10], and Wikipedia [5]1.
The XPath queries are shown in Table 1; they are similar to those evaluated in [11, 12]. All tests were
performed on a dual 64-bit Opteron (using one processor) with 2.2 GHz and 16 GB RAM and the
SUSE 10.1 operation system. BaseX was implemented in Java, using the 64-bit version of JDK 1.5.0_06.

We performed all queries on the current BaseX version and the 64-bit version of MonetDB/XQuery
4.8.20 which currently provides unrivalled performance for large XML documents [13]. Each query
was evaluated ten times, and the best execution time was used as result. The execution time includes
the time for compiling and processing a query and serializing the result.

The performance results are visualized in Figure 5. BaseX is shown twice here, including and exclud-
ing the value index. As can be seen in the results, the execution time is by order of magnitudes faster
when the index is applied to the query; all index-based queries take less than a millisecond, even for
the large Wikipedia data. The index can not be applied to all queries: Query 1, 2 and 13 have no
predicates, and Query 10 consists of a range predicate. Query 10 and 11 take longest for MonetDB.
The comparison between Query 1 & 2 and Query 9 & 10 indicates that the descendant-or-self steps
seems to be responsible for the delay, yielding a large intermediate context set before the next step is
processed. However, the response time for Query 4 is surprisingly fast.

1 version from 2006/02/28 (file size: 4.3 GB)

No Source Query Hits

01 DBLP /dblp/www[./editor]/url 6
02 DBLP //www[./editor]/url 6
03 DBLP //inproceedings[./author/text()="Jim Gray"][./year/text()="1990"]/@key 5
04 DBLP //book/author[text() = "C. J. Date"] 13
05 Swissprot //inproceedings[./title/text() = "Semantic Analysis Patterns."]/author 2
06 Swissprot //Entry/Keyword[text() = "Rhizomelic chondrodysplasia punctata"] 3
07 Swissprot //Entry/PFAM[@prim_id = "PF00304"][..//DISULFID/Descr] 6
08 Swissprot //Entry[./Org/text() = "Piroplasmida"]//Author 57
09 Wikipedia /mediawiki/page[title/text() = 'XML'] 1
10 Wikipedia //page[title/text() = 'XML'] 1
11 Wikipedia //page[revision/contributor/username/text() = 'Chuck Smith'] 14
12 Wikipedia /mediawiki/page/title/text()[. >= 'Q' AND . < 'R'] 6993
13 Wikipedia /mediawiki/page/title/text() 2504732

Table 1: Main DBLP, Swissprot and Wikipedia Queries

MonetDB/XQuery is a full-fledged query processor, supporting the complete XPath and XQuery func-
tionality, whereas BaseX is still limited to XPath 1.0 queries. Though, the code framework was care-
fully designed to meet the complete requirements of XPath and XQuery, including the parallel proc-
essing of multiple XML instances, DTD and XMLSchema parsing or transient document creation.

6 Conclusion

In the scope of our reaearch, we try to push XML main memory processing and querying to its limits,
both in terms of optimized memory usage and efficient querying. We minimize the memory con-
sumption by relationally encoding XML information in a compact node table structure and applying
indexes to uniformly store and reference tokens, and we speedup querying by removing unnecessary
location steps out of XPath queries. Moreover, we take advantage of the built-in value index for string
predicates, accelerating the execution time for many queries by order of magnitudes. We plan to en-
hance our indexes in our future to efficiently process a wider range of predicate types, including nu-
meric operations.

Literature

[1] MonetDB/XQuery. http://monetdb.cwi.nl
[2] XHive. http://www.x-hive.com
[3] M. Ley. DBLP – Digital Bibliography & Library Project. http://www.informatik.uni-trier.de/

~ley/db
[4] SwissProt – Protein Knowledgebase. http://www.expasy.org/sprot
[5] Wikipedia Database Dump. http://download.wikimedia.org
[6] M. Fernández, J. Siméon, et al. Implementing XQuery 1.0: The Galax experience. In VLDB,

pp. 1007-1080, 2003
[7] M. Kay. SAXON – The XSLT and XQuery Processor. http://saxon.sourceforge.net
[8] D. Florescu & Kossmann. Storing and Querying XML Data using an RDMBS. In IEEE, Vol. 22,

pp. 27-34, 1999
[9] T. Grust, M. v. Keulen & J. Teubner. Staircase Join: Teach a Relational DBMS to Watch its (Axis)

Steps. In VLDB,
pp. 524-535, 2003

[10] University of Washington, XML Repository. http://www.cs.washington.edu/research/
xmldatasets

[11] P. Rao & B. Moon. PRIX: Indexing and Querying XML using Prüfer Sequences. In ICDE,
pp. 288-300, 2004

[12] A. Barta et al. Benefits of Path Summaries in an XML Query Optimizer Supporting Multiple
Access Methods. In VLDB, pp. 133-144, 2005

[13] P. Boncz, T. Grust, et al. MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational
Engine. To appear in SIGMOD/PODS, 2006

Figure 5: Query execution times (time in ms)

