
Implementing Filesystems by Tree-aware DBMSs

Alexander Holupirek
supervised by: Marc H. Scholl

University of Konstanz
Dept. of Computer & Information Science

Box D 188, 78457 Konstanz, Germany

holupire@inf.uni-konstanz.de

ABSTRACT
With the rise of XML, the database community has been
challenged by semi-structured data processing. Since the
data type behind XML is the tree, state-of-the-art RDBMSs
have learned to deal with such data (e.g., [18, 5, 6, 16]). This
paper introduces a Ph.D. project focused on the question in
how far the tree-awareness of recent RDBMSs can be used
to, once again, try to implement filesystems using database
technology. Our main goal is to provide means to query
the data stored in filesystems and to find ways to enhance/
combine the data storage and query capabilities of operating
systems using semi-structured database technology.

Two DBMSs with relational XML storage, built on top of
the XPath accelerator numbering scheme [14], are the foun-
dations for our work. With BaseX, an XML database, we
establish a link between user, database and filesystem con-
tent. BaseX allows visual access to filesystem data stored
in the database. An integrated query interface allows users
to filter query results in interactive response time. Second,
we establish a link between DBMS and OS. We implement
a filesystem in userspace backed by the MonetDB/XQuery
system, a well-known relational database system, which in-
tegrates the Pathfinder XQuery compiler [5] and the Mon-
etDB kernel [4].

As a result, the DBMS is mounted as a conventional filesys-
tem by the operating system kernel. Consequently, access
via the established (virtual) filesystem interface as well as
database enhanced access to the same data is provided.

1. INTRODUCTION
Since the beginning of database management systems,

there is a desire to store all data in a database and have
it ready to be queried. Several industrial and research ef-
forts such as WinFS or the Be Filesystem have been under-
taken to push the filesystem into a database. None made it
to technical production quality. Offshoots, like Microsoft’s
Instant Search or Apple’s Spotlight Architecture, however,

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

can be found in all of the recent operating system vari-
ants, and a user demand for products helping to find rel-
evant content can be derived from the increasing popular-
ity of Desktop Search Engines, such as Google’s or Yahoo’s
Desktop Search. While these tools offer a smarter way to
access personal information stored in the filesystem, the
keyword-driven search approach, as it is used by today’s
search engines, is inherently limited. An additional support
for database style query languages would be preferable.

1.1 Problem Description
We generally face the fact that the amount of data stored

in filesystems on personal computers is growing steadily.
This comes as no surprise since—against current opinion—
data gets copied from old machines to new ones instead of
being curated, archived and purged from the working sys-
tem. This may be considered a bad habit, but it surely is
a side effect of storage capabilities increasing at low cost,
and thus cannot be condemned. Jim Gray et al. pointed
out [12] that a “decade ago, 100 GB were considered a
huge database. Today it is about 1/2 of a disk drive and
is quite manageable. For example, a thousand 1990’s mag-
netic tapes fit on a single online disk today—so it is both
economical and desirable to bring the old data forward and
store it on newer technology.” Therefore filesystems contain
a significant amount of text documents, images, and mul-
timedia files. While the mere storage is an easy-to-manage
task, convenient access to and information retrieval from
huge amounts of data is crucial to leverage the stored in-
formation. Current filesystems and their proven, but basic
interface (VFS) support neither of it.

1.2 Challenge
Donald Norman coined the phrase “Attractive things work

better” [26]. While Norman’s statement, in first place, aimed
at pushing aesthetics and attractiveness into user interfaces,
it suits well for any human-centered design approach. With-
out usability, joy of use cannot evolve. Ease of use, on the
other hand, is crucial and for a data storage system it is de-
termined by the ability to search/find and access/use stored
data. In fact, the challenge we now face (and will even more
in the future) is to enhance storage systems in a way that
users can make full use of their data. Finding relevant con-
tent in this ever growing amount of data is a major aspect.
Filesystems still focus on mere storage and tend to be conser-
vative regarding feature enhancements [33]. Consequently,
they do not offer solutions to this demanding task.

1623

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

$ tree ./a

0a9
|-- 1b3
| `-- 2c2
| |-- 3d0
| `-- 4e1
`-- 5f8

|-- 6g4
`-- 7h7

|-- 8i5
`-- 9j6

0<a>

1

2<c>

3<d/>0
4<e/>1

</c>2
3
5<f>

6<g/>4
7<h>

8<i/>5
9<j/>6

</h>7
</f>8

9

0 a 9

1 b 3

2 c 2

3 d 0 4 e 1

5 f 8

6 g 4 7 h 7

8 i 5 9 j 6

pre post n
0 9 a

1 3 b

2 2 c

3 0 d

4 1 e

5 8 f

6 4 g

7 7 h

8 5 i

9 6 j

Figure 1: Basic (simplified) idea of storing trees (such as file hierarchies, XML documents) in a RDBMS [14].

1.3 Research Approach
Despite the fact that several database-driven filesystem

attempts have already failed, the advent of XML brought
some significant enhancements to (R)DBMS that inspired
us to dare another attempt.

In a preliminary study to this Ph.D. project (published in
[22]), we have evaluated the mapping of a file hierarchy and
its content to XML and emulated filesystem operations using
XPath/XQuery/XQUF operations. We found it possible to
perform basic filesystem commands, as well as content-based
retrieval, in interactive time on the constructed filesystem
mappings with an off-the-shelf XML database. Motivated
by these results we pushed the idea forward.

The tree-based XML model has spawned efforts on rela-
tional storage and processing techniques for hierarchically
structured data and meanwhile, RDBMSs have learned to
work with tree-shaped data (e.g., [18, 5, 6, 15, 16]). This is
of direct benefit, as the hierarchic nature of filesystems can
now consistently be mapped to the relational storage (see
Figure 1) and leverage the associated algorithms (an elab-
orate discussion of relational XML storage and algorithms
can be found in [31, Chap. 2]).

A major problem of storing files in a DBMS (apart from
using BLOBs) has been the basic necessity of providing a
schema first. With an unmanageable amount of file formats
this appears to be an impossible mission. Schema-oblivious
storage techniques rendered it possible for XML data to be
stored in the database without previous knowledge of its
interior structure1.

Textual files can easily be converted or wrapped into XML.
More and more applications use XML as their native storage
format anyway (OOXML, OpenDocumentFormat). Data of
this kind is already prepared to be handled with database
technology. From our point of view, these documents are
nothing else but serialized database instances. In conse-
quence, they are not only stored as plain text, but directly
shredded2 into the DBMS. Legacy applications are still able
to process them conventionally by requesting them in their
serialized, i.e., textual representation. In direct communica-

1An additional XML Schema specification for the file type
may be of advantage to formulate queries against the docu-
ment, but is not mandatory.
2A terminus technicus used to indicate the conversation of
XML in its textual representation to an internal format used
by the database. Read it as “import”.

tion with the database, however, XML processing languages
such as XPath/XQuery can be used on the data. Going
through with the concept, and as filesystems are structured
hierarchically, it seems to be a natural thing to also map the
file hierarchy into tree-aware DBMSs.

1.4 Outline
This paper presents work at two opposite ends of a suit-

able DBMS architecture. We will dig down and contribute
an implementation that establishes a link between DBMS
and OS and show how a database with XML/XQuery sup-
port can be used as a user level filesystem. Afterwards,
we move up to the database frontend and demonstrate how
visual access and interactive querying on filesystem data,
stored in the DBMS, can turn databases into primary pro-
cessors for personal information management systems. Re-
lated work and a summary will complete our paper.

Please note that this is work in flux and marks the current
state of our research. Since there has been an explicit call
for students who are in the beginning stages of their work we
aim at providing inspiring thoughts for a lively discussion.

2. THE DATABASE AS FILESYSTEM
Traditionally, files are roughly classified as either text or

binary. We add XML as a third type and expose formerly
hidden content of files to the system and the user with both,
its structure and content. The implementation establishes
a link between database and operating system and allows
the use of XML processing languages, such as XPath and
XQuery, on the data. Since the database is mounted as a
conventional filesystem by the operating system kernel, ac-
cess via the established (virtual) filesystem interface as well
as database enhanced access to the same data is provided.

The implementation uses MonetDB/XQuery, a well-known
relational database system with XQuery and XQuery Up-
date Facility (XQUF) support, that integrates the Pathfinder
XQuery compiler [5] and the MonetDB kernel [4].

2.1 The MonetDB/XQuery System
Pathfinder is an XQuery compiler implementation backed

by relational database kernels. It is based on the trans-
formation of XML document collections into relational ta-
bles [14] and emits relational algebra plans, which conse-
quently could be executed on any RDBMS [17]. In combi-
nation with the MonetDB kernel [4] it results in the open

1624

FS Trail

DB Way
DB-aware

applications

legacy access: cat ~/emails/1933.mbs
deep access : cat ~/emails/1933.mbs/Mail/Subject

xls /mnt/deepfuse

libc

VFS

Mapi

DeepFUSE
Implementation

FSOps to
XQuery/XQUF

libfuse

FUSE

ext3

MonetDB/XQuery

DeepFUSE
XQuery Module

Pathfinder
XQuery Compiler

MonetDB Kernel
user

kernel

Figure 2: Establishing a link between OS and DBMS by implementing the DBMS as filesystem in userspace.
Conventional as well as database supported access to the filesystem data is achieved. Navigation into the file
(deep access) is possible by letting the file hierarchy immerse into the file (see also Figure 3).

source MonetDB/XQuery system, which has proven to be
one of the fastest and most scalable XQuery implementa-
tions available today [6].

RDBMSs incorporate the knowledge and research efforts
of years. They have proven to store and query large data sets
efficiently and can be considered mature technology. Using
the power of relational database technology in combination
with recent findings in the domain of semi-structured data
processing makes such systems a promising choice for the
implementation of a user level filesystem with query capa-
bilities. Besides, the Pathfinder XQuery compiler appears
particularly well suited due to the following aspects:

Scalability. It is able to handle huge amounts (up to
10GB) of XML data in an efficient manner.

Targets multiple back-ends. The Pathfinder XQuery
compiler has already been enhanced by a code generator
that emits SQL. This code generator targets off-the-shelf
relational database systems (e.g., DB2) and turns them into
efficient and scalable XQuery processors [17, 15].

Integrates a XML information retrieval system.
PF/Tijah [21] is a text search system that is integrated with
the Pathfinder compiler. It includes out-of-the-box solutions
for common tasks such as index creation and result ranking.
We expect that to be of great benefit for the stored textual
and XML files.

2.2 Filesystems in USErspace (FUSE)
Fuse is a framework for implementing filesystems outside

the operating system kernel in a separate protection domain
in a user process. It was first implemented for and integrated
into the Linux kernel [30]. There are reimplementations for
the Mac OS X [28], FreeBSD [20], and NetBSD [24, 25]
kernels. The Fuse library interface closely resembles the
in-kernel virtual filesystem interface. The user level imple-
mentations are able to register function callbacks that get
executed once a corresponding request is issued by the OS
kernel. The Fuse kernel module and the Fuse library com-
municate via a special file descriptor: /dev/fuse. This file
can be opened multiple times, and the obtained file descrip-
tor is passed to the mount syscall, to match up the descriptor
with the mounted filesystem. Our implementation is built
on top of the libfuse library as depicted in Figure 2.

2.3 System Architecture
From a user’s perspective, the system provides two access

paths to the filesystem. Conventional/legacy access for any
application can be achieved as exemplified by the cat com-
mand. The (virtual) filesystem operations relevant to print
the file to standard output are looped back into userspace
and captured by the functions registered with the callback
interface of the libfuse library. The DeepFuse implemen-
tation3 is responsible for translating the filesystem opera-
tions into corresponding XQuery/XQUF requests.

The MonetDB/XQuery server offers a well-defined and
easy to use API (encapsulated in the Mapi library) to lever-
age its functionality. DeepFuse communicates as a client
with a running server using a database driver and a textual
protocol. The most frequently used functions called by the
Fuse implementation have been encapsulated in an XQuery
Module. This is to the best advantage as it allows Monet-
DB/XQuery to prepare a query plan for those functions,
resulting in a much faster execution.

The user level filesystem implementation operates on a
filesystem XML representation valid against a W3C XML
Schema Definition. A DeepFuse XML instance is a (possi-
bly empty) collection of files. Following the UNIX tradition
there are block and character special, directory, fifo, sym-
bolic link, socket and regular file types. Filesystem meta-
data, the stat information (access time, protection mode,
file size . . .) and any information relevant to operate a tradi-
tional filesystem is placed in the http://www.deepfs.org/fs
namespace. This namespace encapsulates the information
needed to operate the database as a filesystem in userspace.
It is stored in a separate XML collection inside the Monet-
DB/XQuery system.

The second access path (as depicted with the xls com-
mand) goes along the conventional database interface. The
filesystem data is stored in the database, and functions im-
plemented in the XQuery module are ready to be used. How-
ever, this is not the crucial point. We expect applications
that use XML as their storage format to query their data

3We call it DeepFuse, because operations on the file hierar-
chy do not necessarily end at the file level, but can continue
on the file’s inherent structure. The navigation along the
file hierarchy in our implementation is basically the same as
the navigation inside the XML files.

1625

/
|-- etc
|-- home
| `-- emails
| `-- 1933.mbs
`-- var

<dir name="emails">
<file name="1933.mbs">

<Mail>
<From>christian.gruen@gmail.com</From>
<To>alex@holupirek.de</To>
<Subject>

Re: Tivoli-Backup von phobos04
</Subject>
<Content-Type>text/plain</Content-Type>
<Section>

Hallo, ein kurzes Update ...
</Section>

</Mail>
</file>

</dir>

pre post size level kind content
0 12 12 0 fdir dir @name=’emails’
1 11 11 1 freg file @name=’1933.mbs’
2 10 10 2 elem Mail
3 1 1 3 elem From
4 0 0 4 text christian.gruen@gmail.com
5 3 1 3 elem To
6 2 0 4 text alex@holupirek.de
7 5 1 3 elem Subject
8 4 0 4 text Re: Tivoli-Backup von phobos04
9 7 1 3 elem Content-Type

10 6 0 4 text text/plain
11 9 1 3 elem Section
12 8 0 4 text Hallo, ein kurzes Update ...

Figure 3: From file hierarchy to relational storage. Translators include file content to allow content and
structure based queries as well as the deep access functionality while navigating along the file hierarchy.

for partial content or to only update “dirty” nodes instead
of reading, processing and writing back complete XML files
in their textual format, as this is the case when stored in
filesystems.

3. THE DATABASE AS PERSONAL INFOR-
MATION MANAGER

BaseX [3, 13] is an XML database, developed at the Uni-
versity of Konstanz. It is using a storage format influ-
enced by and derived from the XPath accelerator number-
ing scheme [14]. From the beginning, the system was de-
signed to offer visual access to the stored data. Together
with the so-called “simple query mode” the system allows
end-users to access its capabilities without having to explic-
itly use XQuery. That is why the system is suitable for
putting our FS/DB approach to the proof against Desktop
Search engines and other Personal Information Management
(PIM) tools. With the, in the meantime, almost complete
implementation of the XQuery Full-Text Candidate Recom-
mendation [1] and a full-text index capable of fuzzy word
matching, BaseX can fully exploit the inclusion of textual
contents of files.

3.1 Mapping a File Hierachy into the Database
By choosing a directory, BaseX offers a feature to “shred”

the file hierarchy to a DeepFuse XML instance and open it
as a database. Apart from minor tweaks in the visualizations
the instance is treated and processed as any other database
instance. Basic user level commands (ls, du, locate ...)
are implemented to operate on a DeepFuse XML represen-
tation of a filesystem. They mimic their counterparts on the
operating system’s shell.

As mentioned before, the XML representation breaks with
the long tradition to consider a file as just a sequence of
bytes. It unseals the black-box and lets the classical file
hierarchy immerse into the files itself. The consideration of
content and structure opens the door for query languages to
operate on the data.

3.2 Searching Files using XQuery Full-Text
A central issue of the inclusion of textual contents into

the XML representation of the filesystem is to allow the full
range of XQuery retrieval features on the data.

While XML files are ready to be included without addi-
tional effort (unless schema validation is demanded), com-
monly used binary files, such as images or audio files, contain
metadata, which is quite relevant for querying.

BaseX provides a plug-in mechanism to easily develop and
integrate translators for those file types. Several translators
for various file types (e.g., mp3, tif, png . . .) are already
included. Textual files with inherent structure, such as e-
mail, suggest themselves to be included with their structure
exposed (see Figure 3). The current translator in BaseX
produces a mapping, such as:

<file name ="..." ...>
<Mail >

<Subject >...</ Subject >
<From >...</From >
<To >... </To >
<Content -Type >...</ Content -Type >
<Section >...</ Section >
<Attachment ...>... </ Attachment >

</Mail >
</file >

Although the implemented mappings are straightforward,
they externalize formerly hidden information. The lever-
age of tacit information, formerly encapsulated in various
formats, leads to a standardized and easily accessible rep-
resentation. This provides a basis to operate on filesystem
data with query languages. Think, for instance, about find-
ing an e-mail (with a big attachment) on disk which was
sent to you by a colleague in a specific mail:

for $mail in //Mail
let $attach := $mail/Attachment
where $mail/From = 'christian.gruen@gmail.com '

and $mail/Section
ftcontains 'Holupirek ' ftand 'phobos04 '

and $attach/@size > 3000000
return deepfs:path($attach)

1626

Figure 4: BaseX highlighting the result matches of a full-text query. On the left, the continuation of the file
hierarchy along the file’s inherent structure can be seen.

Queries may combine filesystem metadata (such as file
size, directory names) with file content and use both filesys-
tem commands or database languages to query or manipu-
late the data. In the case of e-mail, comparable functionality
is already offered by advanced e-mail applications. However,
each application has to provide its own implementation lead-
ing to highly redundant code for similar functionality. Our
approach strives to provide such capabilities as a basic ser-
vice of the filesystem layer. Furthermore, the search is not
restricted to application defined communication paths (such
as the often connected e-mail, calendar, address book appli-
cations), but can include any data stored in the filesystem.

3.3 (Visual) Access to Filesystem Data
BaseX provides visual result presentation (see Figure 4

and 5). The central component is a space-filling visualiza-
tion for hierarchic information, the treemap [23]. It makes
extensive use of semantic zooming. In this context semantic
zoom is to be looked upon as a form of details-on-demand
technique which lets the user see different amounts of de-
tail in a view by zooming in and out. The visualization is
closely related with the description of data in the filesystem
as “zooming in” correlates with “navigating into” a file.

When using desktop search engines users expect imme-
diate responses on their keyword-based queries. BaseX an-
swers those expectations by visually presenting the result set
and allowing instant access on the data (e.g., the images in
Figure 5 or the actual e-mail in Figure 4—both can directly
be accessed by double-clicking).

While we consider keyword-driven search a suitable ap-
proach for end-users and ad hoc queries, we assume that it
may not be enough to cope with the explosive growth of
personal information and the full variety of present and fu-
ture user search tasks. With the tight coupling between dif-
ferent kind of query strategies (keyword-based, full-fledged
XPath/XQuery) and result presentation, we try to estab-
lish a query cycle, which allows to refine, i.e., filter/select/
modify the (intermediate) results in a user-system feedback
loop. This, for instance, allows to start a search with a sim-
ple keyword-based query, browse the result items and refine
a selected context set by issuing an XQuery.

4. RELATED WORK
Various ideas have been proposed for including file con-

tents into information systems.
One of the earliest attempts, the Semantic File System [10],

extracted attribute-value pairs for specific file types via so-
called transducers. Content queries could be formulated
by entering directory paths and extending them with AND
combined query terms. The result was a virtual path, resem-
bling a default directory path and including symbolic links
to the result documents. While SFS offered only limited re-
trieval functionality and ways of representing the query re-
sults, it has influenced numerous future filesystem projects,
including Shore [8], HAC [11], or the recently dropped WinFS
from Microsoft.

An interesting approach to bring XML and filesystems
together was presented by IBM’s XMLFS [2]. The un-
derlying prototype implementation offered access to XML
documents via an NFS server, and a simple path language
allowed querying tags and text nodes across several doc-
uments. Nevertheless, the project was not extended to a
full XPath/XQuery support, and document storage was ap-
parently limited to XML instances and to the existence of
DTDs.

The visionary paper [9] proposes dataspaces as a new data
management abstraction. It led to various promising re-
search efforts regarding the development of software plat-
forms to facilitate a heterogeneous and distributed mix of
personal information, such as Semex [7]. Approaches such
as this are far more prospective and target the development
of so called DataSpace Support Platforms (DSSPs). These
are supposed to meet the criteria defined in [19]. In this
context our work can be seen as a facet inside a DSSP.

IBM’s Virtual XML Garden [27] and the draft of File Sys-
tem XML (FSX) [32] share the common idea to have a uni-
fied view over heterogeneous data sources. Since filesystems
are structured hierarchically, they can easily be mapped to
an XML structure as sketched in [32]. Together with the
idea to let the filesystem immerse into the file [29], these
provide the basis for the construction of our filesystem in-
stance.

1627

Figure 5: BaseX provides visual access to query results. The user is able to browse and manipulate the
results and to further refine the result set by issuing further keyword-based or full-fledged (X)Queries.

5. PROJECT STACK AND FUTURE WORK
As mentioned before, our long-term research is focused

on the question: “Is it possible to combine database and
operating system technology to query the filesystem?”. We
follow a top-down approach to evaluate the feasibility of our
plan. Whenever research yields promising results on one
of the top layers we try to push the concept down until it
eventually integrates into the operating system.

X-Hive/DB

BaseX

MonetDB/XQuery

Simulation Proof of concept

User ↔ FS/DB DB as PIManager

FS/DB ↔ OS DB as FUSE

Breaking DB

technology

out-of-the-box

DBFS?

Extending

tree-aware

DBMSs

FSDB?

Hence, the first step was to provide a proof of concept
at the topmost layer [22]. A simulation evaluated the ques-
tion whether a state-of-the-art XML-aware database man-
agement system (XHive/DB) is capable of processing filesys-
tem operations as well as demanded query functionality on
filesystem data represented as XML in interactive time.

The result triggered the second step which is explicitly
focused on the evaluation of relational XQuery techniques
as summarized in [31]. We agree with the idea to lever-
age proven relational database technology to operate semi-
structured data. The resulting tree-awareness of RDBMSs is
fundamental for our approach to implement filesystems us-
ing databases. Given that, the second project level is split
and the two approaches have been described throughout this
paper:

With BaseX, we try to connect user and filesystem/database
hybrid. We will focus on performance evaluation and us-
ability studies in comparison to desktop search engines and
personal information utilities.

MonetDB/XQuery is the reference implementation for re-
lational XQuery processing. As described, the system offers
dedicated APIs at different layers of its architecture making
it suitable to establish a link between operating system and
DBMS. We will use it to evaluate the (performance) trade-
offs we have to pay for a “queryable” filesystem. The eval-
uation will be a central issue of our future work. According
to the top-down approach the results will determine if fur-
ther integration to the operating system will make sense at
all. Apart from that, two main directions can be considered:

“Breaking database technology out-of-the-box” is geared
towards isolating the relevant techniques to implement a
storage layer that suits both, filesystem and database de-
mands. One can think of using the XPath accelerator num-
bering scheme as a basis for a filesystem implementation.
Interlinking database node ids with filesystem vnodes may
be an approach to further investigate. This direction would
strive after a smooth integration to the operating system
kernel, as such the label DBFS in the project stack. The
broad idea would be a storage that is tuned for filesystem
access, but able to serve as a storage layer to the database. A
very early prototype rendered it possible to use the low-level
interface of the Fuse API to implement a backing storage
for BaseX. This finally could lead to an implementation of
an in-kernel filesystem capable of interacting with a DBMS
in userspace.

“Extending tree-aware DBMSs” on the other side would
more closely follow the approach presented here, i.e., to im-
plement the filesystem in the DBMS. However a tighter in-
tegration, pushing several components into the DBMS itself,
is quite likely. This direction would initially stick with the
Fuse approach and accept the obvious performance penalty.
However, one could think about a purely domain-specific
filesystem, for instance, using it just for user data. The
argumentation would be in line with using an encrypted
filesystem. The administrator/user decides to pay (a yet
to be determined price) for a more advanced, respectively
otherwise missing, functionality.

1628

6. SUMMARY
While filesystems provide an easy and well-understood

interface to the data, they lack important and demanded
features like the ability to query the data. Applications
such as desktop search engines or personal information man-
agement tools often use a keyword-based search approach,
which undeniably provides a user-friendly information dis-
covery mechanism. There is no need to know the structure
or format of the data, let alone a query language.

Ideally however, all retrieval strategies, i.e., with no, par-
tial or full knowledge about structure, format and content
of the data, should be supported. Existing tools usually in-
dex plain text content and thus have started to break the
file content out of its black box. That is to say, while tradi-
tional filesystems do not care about the content of a file, the
supporting user level applications which provide the missing
search and retrieval functionality do take it into account. A
consistent further development is to provide means to ex-
pose the inherent file structure to allow content and struc-
ture queries.

RDBMSs are the right choice to query vast amounts of
structured data. Data stored in the filesystem, however, is
very heterogenous. With the rise of XML, the database com-
munity has been challenged by semi-structured data pro-
cessing, enhancing their field of activity. Ongoing research
efforts made RDBMSs, such as MonetDB/XQuery, capable
of operating on tree-shaped data. As more and more appli-
cations save their data as XML, those files are ready to be
directly saved into a DBMS. To go through with the con-
cept, the file hierarchy tree along with its metadata is to be
stored in the database in the same fashion.

We contribute implementations establishing a link between
users and the filesystem/database hybrid as well as DBMS
and OS. The DBMS is finally mounted as a filesystem by
the OS and offers its data to arbitrary applications via the
established (virtual) filesystem interface as well as through
its database interface. As such we demonstrate the possi-
bility of providing legacy filesystem access while storing the
data in the database and have it ready to be queried.

7. ACKNOWLEDGMENT
This research is supported by the German Research Coun-

cil (DFG) Research Training Group GK-1042 “Explorative
Analysis and Visualization of Large Information Spaces”.
We like to especially thank Christian Grün for lively dis-
cussions, assistance & comments and also the anonymous
reviewers for providing valuable feedback.

8. REFERENCES
[1] S. Amer-Yahia, C. Botev, S. Buxton, P. Case,

J. Doerre, M. Holstege, J. Melton, M. Rys, and
J. Shanmugasundaram. XQuery 1.0 and XPath 2.0
Full-Text. World Wide Web Consortium Candidate
Recommendation, May 2008.

[2] A. Azagury, M. Factor, Y. S. Maarek, and
B. Mandler. A Novel Navigation Paradigm for XML
Repositories. Journal of the American Society for
Information Science and Technology (JASIST),
53(6):515–525, 2002.

[3] BaseX. Visual Exploration and Querying of XML
Data. http://www.basex.org/.

[4] P. A. Boncz. Monet: A Next-Generation DBMS
Kernel For Query-Intensive Applications. Ph.D.
Thesis, U Amsterdam, The Netherlands, May 2002.

[5] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. Pathfinder: XQuery -
The Relational Way. In Proc. of the 31st Int’l
Conference on Very Large Databases (VLDB),
Trondheim, Norway, 2005.

[6] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational
Engine. In Proc. of the ACM SIGMOD Int’l
Conference on Management of Data, Chicago, Illinois,
USA, June 2006.

[7] Y. Cai, X. L. Dong, A. Y. Halevy, J. M. Liu, and
J. Madhavan. Personal Information Management with
SEMEX. In Proc. of the ACM SIGMOD Int’l
Conference on Management of Data, Baltimore,
Maryland, USA, June 2005.

[8] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring Up Persistent Applications. In
Proc. of the ACM SIGMOD Int’l Conference on
Management of Data, Minnesota, USA, May 1994.

[9] M. J. Franklin, A. Y. Halevy, and D. Maier. From
Databases to Dataspaces: A New Abstraction for
Information Management. SIGMOD Record,
34(4):27–33, 2005.

[10] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and
J. O’Toole. Semantic File Systems. In Proc. of the 13th
ACM Symposium on Operating System Principles,
pages 16–25, California, USA, October 1991.

[11] B. Gopal and U. Manber. Integrating Content-Based
Access Mechanisms with Hierarchical File Systems. In
Proc. of the 3rd USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages
265–278, February 1999.

[12] J. Gray, A. S. Szalay, A. Thakar, C. Stoughton, and
J. vandenBerg. Online Scientific Data Curation,
Publication, and Archiving. CoRR, 0208012, 2002.

[13] C. Grün. Pushing XML Main Memory Databases to
their Limits. In Proc. of the 18th GI-Workshop on the
Foundations of Databases, pages 60–64, June 2006.

[14] T. Grust. Accelerating XPath Location Steps. In Proc.
of the ACM SIGMOD Int’l Conference on
Management of Data, Madison, Wisconsin, June 2002.

[15] T. Grust, M. Mayr, J. Rittinger, S. Sakr, and
J. Teubner. A SQL:1999 Code Generator for the
Pathfinder XQuery Compiler. In Proc. of the ACM
SIGMOD Int’l Conference on Management of Data,
Beijing, China, June 2007.

[16] T. Grust, J. Rittinger, and J. Teubner. Why
off-the-shelf RDBMSs are better at XPath than you
might expect. In Proc. of the ACM SIGMOD Int’l
Conference on Management of Data, Beijing, China,
June 2007.

[17] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In (e)Proc. of the 30th Int’l Conference on
Very Large Data Bases (VLDB), Toronto, Canada,
August 2004.

1629

[18] T. Grust and M. van Keulen. Tree Awareness for
Relational DBMS Kernels: Staircase Join. In
Intelligent Search on XML Data, volume 2818 of
Lecture Notes in Computer Science, pages 231–245.
Springer, 2003.

[19] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles
of Dataspace Systems. In Proc. of the 25th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), Chicago, Illinois,
Maryland, USA, June 2006.

[20] C. Henk. FreeBSD Port of the FUSE Framework.
http://fuse4bsd.creo.hu/, 2007.

[21] D. Hiemstra, H. Rode, R. van Os, and J. Flokstra.
PF/Tijah: Text Search in an XML Database System.
In Proc. of the 2nd International Workshop on Open
Source Information Retrieval (OSIR), 2006.

[22] A. Holupirek, C. Grün, and M. H. Scholl. Melting Pot
XML: Bringing Filesystems and Databases One Step
Closer. In Proc. of the 12th GI-conference on Database
Systems in Business, Technology and Web (BTW),
Aachen, Germany, March 2007.

[23] B. Johnson and B. Shneiderman. Tree Maps: A
Space-filling Approach to the Visualization of
Hierarchical Information Structures. In Proc. of the
2nd International IEEE Visualization Conference,
pages 284–291. IEEE Computer Society, 1991.

[24] A. Kantee. puffs - Pass-to-Userspace Framework File
System.

In Proc. of the 2nd Asia BSD Conference
(AsiaBSDCon), 2007.

[25] A. Kantee and A. Crooks. ReFUSE: Userspace FUSE
Reimplementation Using puffs. In Proc. of the 6th
European BSD Conference (EuroBSDCon), 2007.

[26] D. A. Norman. Emotional Design: Why We Love (Or
Hate) Everyday Things. Basic Books, January 2004.

[27] K. H. Rose, S. Malaika, and R. J. Schloss. Virtual
XML: A Toolbox and Use Cases for the XML World
View. IBM Systems Journal, 45(2):411–424, 2006.

[28] A. Singh. A FUSE-Compliant File System
Implementation Mechanism for Mac OS X.
http://code.google.com/p/macfuse/.

[29] S. St.Laurent. Bringing the File System into the File.
http://www.simonstl.com/articles, 1998.

[30] M. Szeredi. Filesystem in USErspace.
http://fuse.sourceforge.net/.

[31] J. Teubner. Pathfinder: XQuery Compilation
Techniques for Relational Database Targets. Ph.D.
Thesis, TU München, Germany, Oct 2006.

[32] E. Wilde. Merging Trees: File System and Content
Integration. In Proc. of the 15th Int’l Conference on
World Wide Web, pages 955–956, Edinburgh,
Scotland, UK, May 2006.

[33] E. Zadok and J. Nieh. FiST: A Language for
Stackable File Systems. In Proc. of the USENIX
Annual Technical Conference, General Track, pages
55–70, San Diego, CA, USA, June 2000.

1630

