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Abstract

This Bachelor Thesis describes concepts behind the extension of a native
XML database with XQuery Update. BaseX is a compact and highly efficient
open source XML database and XQuery processor. Based on a relational doc-
ument encoding, a generic method is presented, that exploits the sequential
encoding scheme to its full advantage. The implementation yields excellent
test results. Further optimizations are proposed. A method to speed up the
execution of critical structural updates and ways to accelerate the overall
process. A discussion on ACID conformity in transactional XML database

systems finalizes this work.

Zusammenfassung

Diese Bachelor-Arbeit beschreibt die Konzepte hinter der Erweiterung einer
nativen XML-Datenbank um XQuery Update. BaseX ist eine kompakte
und hoch-effiziente open-source XML-Datenbank und XQuery Prozessor.
Basierend auf einer relationalen Dokumenten-Kodierung wird eine generische
Methode vorgestellt, welche das sequentielle Kodierungsschema zu ihren Vorteilen
nutzt. Die Implementierung liefert exzellente Testergebnisse. Weitere Opti-
mierungen werden vorgeschlagen. Eine Methode, um die Ausfiihrung von kri-
tischen strukturellen Anderungen zu beschleunigen, und weitere, die den all-
gemeinen Prozess verkuerzen. Eine Diskussion beziiglich ACID-Konformitéat

in transaktionalen Datenbanksystemen schliefst die Arbeit ab.



Contents

1 Introduction 1
1.1 Motivation. . . . . . . . .. 1
1.2 Overview . . . . . . .. 2

2 Preliminaries 3
2.1 XML . .o 3
2.2 XML Databases . . . . . . ... ... 3
2.3 XML Encoding Schemes . . . . .. ... ... ... 4
2.4 BaseX . . ... 6

2.4.1 Table Encoding in BaseX . . ... ... ... ..... 6

3 XQuery Update 9
3.1 XQuery Update . . . . . . . .. . ... ... .. .. 9
3.2 New Expressions . . . . ... ... ... ... ... 10

321 Imsert . . . . . . .. 10
322 Delete . . . ... 11
323 Replace . . . . . .o 12
324 Rename . . ... ... .. ..o . 12
3.25 Transform . . . . ... ... ... 12
3.3 Pending Update List . . . . . . ... . ... ... ... .... 13
3.4 Checking data model constraints . . . . . .. ... ... ... 14
3.5 Orderof Updates . . . . . . . . ... .. ... ... ...... 14



Contents

4 Implementation

4.1 Overview . . . ...
4.2 Pre values vs. node IDs as identifiers . . . . . .. . ... ...
4.3 Architecture . . . . .. ...
4.4 Applying Updates . . . . . ... ... ... ... ...

4.4.1 Checking Constraints . . . . . .. ... ... ... ...

4.4.2 Execution Example . . . . . ... .. ... ... ...,
4.5 Insert Before Statement . . . . .. ... ... ... ..
4.6 Text Node Merging . . . . . . . ... ... ... ... .....
4.7 Fragment Processing . . . . . .. .. ... 0.

5 Performance

5.1
5.2
9.3
5.4
5.5

Test settings . . . . . . .

MonetDB . . . . . . ..

Test Queries . . . . . . .

Results

Observations . . . . ..

6 Future Work

6.1 Overview . . . . . . . . .
6.2 Optimizations . . . . . . . . . . ... . ...
6.2.1 Fragmentation . .. ... ... ... .. ... ...
6.2.2 Optimizing the Pending Update List . . . . . .. ...
6.2.3 Block-wise replace . . . . .. ... ...

6.2.4

Page-wise updates

6.3 Rollbacks and Recovery

7 Conclusion

Bibliography

16
16
16
18
19
20
21
22
23
24

26
26
27
28
30
30

36
36
37
37
37
38
39
42

45

47



Chapter 1

Introduction

1.1 Motivation

Compared to a dinosaur like the field of relational database systems, the
world of XML is still a young one. Emerging in almost every field imaginable,
XML is not only used in large database applications, but on a smaller scale
as well. Having emerged as the most versatile file format for data exchange
of all kinds and in all aspects of life, the need for, not only further developed,

but also more specialized database systems is growing steadily.

Yet, XML not exactly had its deserved break-through. Well known commer-
cial database providers like Oracle, IBM and Microsoft extended their large
scale solutions with the support for XML already years ago. Still, slightly
outdated prejudices exist. If we look for something to blame this on, we
might make a find with the late introduction of a standardized method to
manipulate XML data. Database technology without a well documented and

widely accepted updating standard was considered outdated even years ago.

Several attempts have been made ' 2. With the release of the XQuery Update
Facility candidate recommendation (XQUF), the quest has hopefully come
to an end. As the specification is still young, trying to establish BaseX [6]

among its early adopters seemed worthwhile.

Over the last few years, BaseX has been steadily approaching the state of
a fully developed database system. With the possibility of manipulating

Yhttp:/ /www.w3.org/TR/xslt20/, access: 2010-09-21
Zhttp:/ /xmldb-org.sourceforge.net/xupdate/xupdate-wd.html, access: 2010-09-21
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1. Introduction 2

databases but lacking an interface to actually perform these, adding sup-
port for the XQUF bubbled itself to the top of our to-do list. Integrating an
update standard rises a lot of questions. What is generally possible? How do
we deal with concurrency? What can be done to prevent data loss? How far

can we take it performance-wise?

BaseX features a compact and highly optimized back end. With a sequential
table encoding tailored to excel at querying, we are eager to find out how far
we can take it with updates. Adding an updating mechanism requires far-
reaching changes and an architecture that is adaptable to future needs. At the
same time overhead is to be kept at bay. The updating module should exhibit

the same qualities as the rest of the system: compactness and efficiency.

To be competitive, a database system has to measure itself with the ACID
properties [9] - a respected set of criteria that describe essential qualities for
transactional database systems. Identifying insufficiencies and ways to solve

them is another question to be answered.

1.2 Overview

Chapter 2 introduces some basic concepts of a native XML database system.
Specialties of XQuery Update and an overview of the new available functions
follow afterwards (Chapter 3). The implementation process of this work to-
gether with problems, that had to be solved, is documented in Chapter 4.
Related work and other projects have to compete against our implementation
in Chapter 5.

The implementation of XQuery Update itself opened up a multitude of pos-
sible directions for future work. To help BaseX become a reliable and mature
XML database, some non-trivial database mechanisms are yet to be added.
Features like recovery may be well established within relational database sys-
tems. Due to the hierarchical nature of XML data and the compact storage
of BaseX, the challenges are of a different kind. Some problems still wait
to be solved a better way. A glimpse on this together with suggestions to
improve overall performance is given in Chapter 6. Finally, a conclusion can
be found in Chapter 7.



Chapter 2

Preliminaries

2.1 XML

XML is great.

As I couldn’t do it any better, an introduction featuring all its bells and
whistles is left to [3,6,7].

2.2 XML Databases

The growing popularity of XML as a storage and exchange format leads to
new challenges. The result is an increase in number and size of XML docu-
ments waiting to be processed. Providing efficient and reliable methods for
storing and processing XML are therefore of substantial importance. Tradi-
tional database technology has been on the market for a long time. As the
requirements to a database are the same, for relational data and XML data,
making use of this highly developed technology seems a good start. Yet, the
specialties of XML and its structured data model complicate the issue. The
XML:DB ! initiative divides XML databases into three categories:

e XML enabled databases build upon existing databases. Oracle uses
this approach for example. Exploiting well established database tech-
nology brings several advantages. These systems have been tested ex-

tensively in regards to huge data spaces and performance. Advanced

http:/ /xmldb-org.sourceforge.net/fags.html, date of access: 2010-09-18
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2. Preliminaries 4

database features are already included. XML enabled databases rely
on relational- or object-oriented data models and an XML mapping on
top. As these databases are not specifically designed for XML, data
can be accessed in various ways (SQL, XPATH ...). Composing and

decomposing an XML document involves additional steps.

e Native XML databases are built from scratch to process XML data.
This kind of database defines a model for XML data and operates di-
rectly on this model. An XML document serves as the fundamental
storage unit. The physical storage model can be chosen freely. No ad-

ditional steps are required for composing and decomposing XML.

e Hybrid XML databases aggregate the properties of the other two
types.

2.3 XML Encoding Schemes

Finding a suitable document representation is key for efficient query pro-
cessing. Mapping documents to a relational encoding is one way to do this.
XML data is basically a tree. As trees are a well known structure, a variety
of possible conversions exist. Concerning XML, the particular and minimal

requirements to such a mapping are [5, 2.3,2.4]:

e A unique node id must be assigned to each node

e Document order, which is equivalent to the result of a preorder traver-

sal, must be preserved

In addition, fast evaluation of all XPath axes and efficient support of up-
dates complete the list of requirements. In general, two different approaches
exist. While a sequential encoding does not represent the tree structure by
nature, ids assigned by an hierarchical approach include information on node

relationships and document order.

[10] presents a hierarchical encoding scheme that works especially well for
update operations. A node is identified by a variable length key like 1.3.3.
A byte-by-byte comparison of these keys yields the document order and

hierarchy. Exclusively using odd numbers during the initial mapping leaves
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Figure 2.1: ORDPATH key labelling

room for the insertion of subtrees at a later point. For example, if new siblings
are added between two existing siblings 1.3.1 and 1.3.3, the new keys are
extended with an additional level using even numbers. In this example the
inserted nodes end up with the keys 1.3.2.1, 1.3.2.3 etc., for example. Even
numbers only influence the document order. They have no effect on the depth

of a node or on any ancestor- and descendant- relationships.

Using the ORDPATH encoding scheme, an updating process omits the usu-
ally necessary relabeling of previously existing nodes. However, node keys,
being highly structure dependent and of variable length, need to be stored

in an efficient manner to overcome their verbose nature.

Using a sequential encoding scheme, the document nodes are labeled sequen-
tially in document order. As a result, node ids do not contain any information
on the hierarchical structure, but, due to their fixed length, are a great start

to achieve a compact storage layout.

Grust proposes such a distinct scheme that provides efficient evaluation of
all XPath axes as well as a compact storage representation [8]. The core of
his work is the pre/post plane. The document nodes are assigned a pre and
post value, according to their positions they take during a pre-order and
post-order tree traversal. Each document node induces a partition of this
plane into four disjoint regions, representing the major XPath axes ancestor,
descendant, preceding and following. Evaluating one of these axes finally
comes down to a region query, a kind of query that is highly optimizable with

the help of additional tree structures. In order to grant full access to all XPath
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Figure 2.2: Table Encoding in BaseX

axes, Grust adds parent, attribute and tag information to each node. The
result is a five-dimensional descriptor, that is created for each node during
the initial parsing of a document. As said before, using a sequential approach
helps with realizing a compact storage layout, mapping the properties of a
node to fixed length keys. Yet, as the pre and post values represent the
document order and hierarchy, performing updates is expensive. Facing the

worst-case scenario, updating can lead to a relabeling of all document nodes.

2.4 BaseX

A native XML database using a sequential encoding approach is the open
source project BaseX. BaseX is developed by the Database and Information
Systems group at the University of Konstanz, led by Professor Dr. Marc H.
Scholl. With Christian Griin as the main developer, today it is renowned as a
fast and versatile XQuery processor and XML database. Offering a complete
implementation of W3C’s XQuery 1.0 and its Full Text extension, XQuery

Update emerged as the most desirable feature on the never-ending to-do list.

2.4.1 Table Encoding in BaseX

BaseX makes several adjustments to the encoding scheme to speed up query
evaluation and optimize memory consumption. An example of the used en-

coding scheme is given in figure 2.2.

In addition to the pre value, which also serves as a node id, BaseX uses

distance and size values to keep track of the node relations in a document.
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This is due to several reasons:

1. In contrast to the absolute parent value, the distance gives information
on the number of nodes lying between a parent and child node. Using an
absolute parent value, all child nodes have to be updated if the parent
changes its pre value. We keep in mind: parent = pre — distance. In
conclusion, the distance value supports a fast evaluation of the ancestor

axis without raising costs.

2. The size value provides information on the number of descendant nodes

and therefore fast access to the following siblings.

As the value of a node (name, attribute value, text etc.) is not stored in
the table but referenced, all information on a node can be stored occupying
constant memory. Together with the pre value, a node on disk can be accessed
in constant time via calculating the offset. All kinds of nodes are stored in
the same table (including text and attribute nodes) where a kind value (not

shown) helps with distinction and helps realizing the full axis feature.

Yet, this encoding scheme also suffers from the usual drawbacks regarding
update operations. A carefully chosen table layout minimizes the negative
effects. As explained above, using relative values wherever possible (distance,
size) reduces the amount of necessary node updates. Let’s assume we add a
subtree t as an only child to an element e, with s being the number of nodes

in ¢. Hence, the following values have to be updated:

1. The pre values of all nodes on the following-axis of e are increased by

s.
2. The size values of e and all its ancestors are increased by s.

3. All distance values of the nodes on the following-sibling axis of e are

increased by s.

This applies accordingly to a delete operation.

Of course, changing the pre values after an update makes them essentially
useless as node identifiers. A unique node id is therefore assigned to each

node that does not change during a node life cycle. To keep track of nodes,
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a mapping between pre values and node ids is used, that is of substantial
meaning in scope of this work. This topic is discussed in detail at a later

point.

Explaining experimental results in a later chapter requires some deeper
knowledge of the storage design. As mentioned before, if documents are
stored in a sequential manner on disk, certain update operations will lead to
a substantial slowdown due to tuple shifting. For example, if a node at the
lowest possible pre value is deleted or inserted, every node below would have

to be shifted on disk by the number of deleted or inserted nodes.

To keep costs low, BaseX stores its database files not in one location, but
divides a table into pages. The file system manager subsequently decides
where these pages are stored on disk. A directory, which resides in main
memory, stores the first pre value together with its page reference. Each page
initially contains 256 tuples, and knowing the lowest pre value a following
page contains, makes it simple to find the exact location of a node. Using
this approach, making structural changes no longer results in shifting half
of the document on average. These drawbacks are limited to a single page
for the deletion of a node of size one. As gaps are not allowed within pages,
deleting or inserting a single node would result in (pageentries) — 1 shifts,
worst case. Gaps are shifted to the end of a page. Further details can be
looked up in [6].

Yet frequent updates lead to fragmented and growing database files which
could result in poor query performance and storage efficiency. A solution for

this is proposed in Chapter 5.



Chapter 3

XQuery Update

3.1 XQuery Update

There are several extensions available for XQuery that add further function-
ality to the language and with this give the possibility for a much broader
application. The Full Text extension specifies expressions and functionality
to retrieve tokens in data sets that contain full text, with BaseX being among
the first systems to support this standard [1,7]. Another extension is XQuery
Update [4]. Besides the base language that provides no functionality to ma-
nipulate XML data, the XQuery Update Facility (XQUF) basically enables

us to do the following:
1. Insert nodes into an existing document.
2. Delete nodes from an existing document.

3. Modify nodes while preserving their identity.

4. Modify copies of existing nodes via the transform expression. The orig-

inal node identities remain untouched.
5. Serialize an XDM instance to secondary storage via fn:put.
The five new kinds of expressions, added by XQuery Update, are rename,

insert, delete, replace and transform. Rename, insert, delete and replace ex-

pressions are specified as basic updating expressions or updating expressions.

9
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Every expression that is not an updating expression is categorized as a simple
expression. This applies to the transform expression as well. Within the scope
of a transform expression nodes to be modified are copied in advance. As a
consequence, the actual target node identities remain untouched. A function
called put provides functionality to serialize XDM instances to secondary
storage. Using this function, serialized documents can be subsequently ac-

cessed using the fn:doc function.

3.2 New Expressions

Using XQuery Update is pretty straightforward if we keep a few things in
mind. The following part introduces some basic knowledge and terminology
to simplify explanations at a later point. The specification provides an in-
depth view on the update facility. So first are examples for all new expressions
categorized as updating expression (l.a.), as well as the available options.
Regarding the insert expression this is especially important as issues arise
with implementation. Afterwards I will give a few details about the new

non-updating expression, namely transform, and the put function.

In XQUF, the keywords 'mode’ and 'nodes’ can be used interchangeably

without any consequences.

3.2.1 Insert

insert node (attribute {'a'}{5}, 'text', <e/>)

as first into /n

Nodes are inserted at the given location. The location basically consists of a
single target node and a modifier to further specify the insert location with
respect to this target. Available options are into, into as first, into as last,

before and after, see figure 3.1.

Using the into modifier, the insert position on the child-axis of the target
node is implementation dependent. However, it may not interfere with other
modifiers that define an exact location in relation to a target. In scope of

this work, “insert into’ adds nodes after the last position on the child-axis. If



3. XQuery Update 11

before after

as first into as last into / into

Figure 3.1: location modifiers for insert expression

another insert statement on the same target uses the “into as last’ modifier,

the final node order must reflect this.

If a distinct combination of a modifier and a target node is used several
times during a snapshot, the sequence order among the inserted nodes is
implementation depended. This also applies to the replace expression. Of

course, XDM constraints may not be hurt.

A document node is not inserted itself, but is replaced by its children.

3.2.2 Delete

delete node //country

All country elements are deleted in the example. In contrast to other updat-
ing expressions where multiple targets are not allowed, the target expression
may return a set of nodes. Therefore it is not necessary to use an iterative ap-
proach, like a FLOWR expression, to delete multiple nodes. Within a query,
it is possible to rename and delete the same node for example. The outcome

and concepts behind this are given below.
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3.2.3 Replace

There are several ways to use a replace expression. Used without the "walue
of > option, the target itself is replaced by the insertion sequence and its

identity is lost.

replace value of node /n

with (attribute {'a'} {5},<a/>, 'xx')

The <n> element is replaced with the order of the insertion sequence being
crucial. For example, attribute nodes are not allowed to succeed element
nodes in the insertion sequence, as they precede them on the descendent
axis of the target. This leads to additional challenges during implementation
and applies accordingly to every other expression where insertion sequences

are used.

Another option is to replace the value of a node with a string value and
preserve its identity. If the target node is an element, all children are deleted

and replaced with the given text node.

3.2.4 Rename

for $n in //n
return (
rename node $n as 'newN',

rename node $n/@id as 'newId’

A rename expression replaces the name of a node with the given name.
Nodes on the attribute- or descendant-axis of the target are not affected. If

required, this has to be done explicitly.

3.2.5 Transform

copy $c := doc('/myDB/doc.xml')//n
modify rename node $c as 'copyOfN'

return $c
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All <n> elements in the document are copied and subsequently renamed.
As updates are performed on node copies, the document remains untouched.
Transform is the only way to make changes that are visible during a snapshot.
The updated nodes are directly returned and can be passed on to other

expressions or functions.

3.3 Pending Update List

I will introduce the concept of the pending update list (PUL) with an exam-

ple. Consider we perform a query on the following document:

doc.xml:
<doc> <a/> </doc>

query:
insert node <b/> into /doc,
for $n in /doc/child: :node()

return rename node $n as 'c'

doc.xml:

<doc> <c/><b/> </doc

The result may be unexpected but reveals instantly the core concept of
XQUF. The former <a> element is the only node to be renamed, despite

the flwor-expression iteratively renaming all children of <doc>.

XQUF adds the updating expression as a new category of expression to the
processing model. Insert-, delete-, replace- and rename- expressions repre-
sent this category, as they allow altering the state of a node. With XQuery
Update, an expression now returns a pending update list (PUL) together
with an XDM instance. This PUL consists of update primitives, with each
primitive representing a single node state change, triggered by the expres-
sion. Prior to execution, all individual lists are merged together forming a
query-wise global PUL. The node state changes on this list are held pending

until the end of a query.

As a result, updates are only visible after a snapshot is finished. Within a

query it is not possible to access any changed node states, with the transform
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expression forming a single exception. On one side, this greatly simplifies
the implementation process, eliminating issues, regarding concurrent update
operations, before they even arise. On the other, the query-writing process

can be challenging at first.

3.4 Checking data model constraints

Before node state changes are applied, all primitives are checked for compat-
ibility. This concept follows the atomicity (ACID) principle. If conflicts are
detected, the update process is aborted and databases are left unchanged.
Compatibility tests are applied at any time during a query, no matter if they
belong to the static or dynamic context. Of course, finding errors as soon
as possible leads to shorter processing times. More details can be found in

Chapter 4, as a lot of information on this is implementation dependent.

3.5 Order of Updates

After all update primitives are gathered on a global PUL we have an un-
ordered set of operations without a specific one to begin with. To support
the concept of a global PUL, the specification suggests an actual order for
all update processes. The idea is to create a hierarchy and by this a set of
rules that defines the effect on a node being target of multiple operations.

The order is visualized in figure 3.2.

Delete apparently is the last update operation to be executed. If a target node
is affected by a renaming expression and a delete expression, the renaming

process would be without effect in the end.

Following this order is a recommendation, however, it simplifies the imple-
mentation process and gives room for optimizations by skipping unnecessary
operations in the first place. Before fn:put is applied, all other operations are
finished. Ultimately, nodes that are serialized by fn:put reflect all changes
made effective during a query. Trying to serialize replaced or deleted node

identities results in an exception.
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insert into, insert attributes, replace value, rename

v

insert before/after, insert into as first/last

v

replace node

v

replace element content

v

delete

put

Figure 3.2: order of updates
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Chapter 4

Implementation

4.1 Overview

As shown before, BaseX uses a sequential document encoding scheme. Up-
dates consequently result in changing a relational tuple. BaseX already fea-
tured atomic update operations like insert, delete and rename prior to the
implementation of XQuery Update to make changes to existing tuples. In

the scope of this work, the main tasks are:

1. Introducing new expressions to the query parser.
2. Designing an architecture that meets the facility requirements.

3. Implementing this architecture with an eye on the compact and efficient

storage layout of BaseX, minimizing overhead wherever possible.

4.2 Pre values vs. node IDs as identifiers

There are two possibilities of identifying nodes during the query process.
The pre value is the position of a node during a tree traversal in document
order and is guaranteed to be unique within a single document. Using this
one, issues arise when several different documents are handled in a query, as

duplicates exist.

We could alternatively make use of a unique node id that each node is as-

signed during document parsing, which is, at this point, equal to its pre

16



4. Implementation 17

number. As this id does not change during a node life-cycle, a mapping
between id and pre values is used that enables us to identify and access
individual nodes at any time. Implementing the concept of pending updates
would then basically be a no-brainer. However, the mapping becomes invalid
if structural updates are performed on a database. Efficient on-the-fly up-
dating of this index is not yet an established feature in BaseX, and has to be
called explicitly. Performing updates on the basis of node id’s is therefore not
an option at the moment. We would also throw the benefits of our sequential

document encoding out the window.

As pre values represent document order, structural updates (insert, delete)
cause a shift of nodes with a pre number higher than the updated position.
So in case of an update, generally half of the document nodes are to be
shifted on disk. But, together with pending updates, we can use this fact to
our advantage. The XQUF defines, that each expression returns an XDM
instance together with a pending update list (PUL), which accumulates all
update operations during a snapshot. Knowing what nodes are to be changed

and how, helps us optimizing the process like this:

1. Create an individual PUL for each document that is accessed during a

snapshot.

2. Check data model constraints for each document using algorithms tai-

lored to our sequential table encoding.

3. Sort all PULs by the pre number of their target nodes and apply bot-
tom to top. Ultimately the pre value of target nodes that have not yet

been processed are unchanged.

We see, using ids instead of pre numbers would cost us the benefits of our

compact table encoding.

Basically with the usage of pre values we can omit to keep id-pre mapping
up to date. This is the most significant advantage of this approach as BaseX

currently lacks an efficient mapping.
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QueryContext

CONTEXT : Context
UPDATES : Updates
QUERY : String

NI

QueryParser Updates

DatabasePrimitives FragmentPrimitives

CONTEXT : QueryContext DOC_OP : Map(Document,Primitives) DOCUMENT : Data DOCUMENT : null

S

Primitives

18

PRIMITIVES : Map(int, NodeOperations)
SORTED_DESC_PRE : List

Rename

Insert

A

L/

L/

NodeOperations

NewValue

NodeCopy

TO_APPLY : List(UpdatePrimitive)

VALUE : QName

INSERTION_SEQ : List(Node)

L

UpdatePrimitive

TARGET : Node

Figure 4.1: architecture of XQuery Update module

4.3 Architecture

As updates are held pending, we need a structure that allows to cache all

update primitives. In addition, it is vital for this structure to meet our pre-

viously defined requirements as follows.

1. Using the pre number of a node for identification during a snapshot.

2. Caching update primitives separately for each accessed document to

handle pre value duplicates among target nodes and to finally apply

updates from bottom to top like stated above.

3. Using processing algorithms tailored to our sequential document en-

coding.

4. Caching insertion sequences for insert- and replace- statements.

5. Supporting the recommended order of update operations.

6. Leaving enough room for optimizations.

Figure 4.1 displays the results of our study. Update primitives are extracted

by the query parser (QueryParser) and passed on to the query context of
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BaseX (QueryContext), which holds all relevant context for a query, like
accessed documents, variables, functions and more. Update operations trig-
gered by XQuery Update are managed by this class as well. The Update class
stores individual update primitives document-wise, keeping a mapping be-
tween each accessed document and a collection of update operations target-
ing this document (Primitives). Primitives subsequently maps pre values of
target nodes to their corresponding update primitives (NodeOperations). Not
only enables this to sort updates by pre values prior to execution and take
advantage of our table encoding. But it speeds up the allocation process of
newly parsed updates as well, using hashing structures with constant access
time. Finally NodeOperations gathers update statements (UpdatePrimitive)
for a single target node, conforming to the recommended update primitive
order. Several types of update primitives are modeled, depending on the op-
eration. Structural updates adding new nodes to a database (insert,replace)
are represented by the NodeCopy class which caches source nodes before any
updates are applied. Value updates like the rename expression are covered
by NewValue. Similar to NodeCopy, the new QName attribute is cached for

later application.

Keeping temporary copies is necessary to prevent dirty reads and accessing
wrong or no longer existing nodes - which is a constant issue as pre values
change with structural updates. Primitives are further divided into database

and fragment primitives, since we treat fragment primitives differently.

4.4 Applying Updates

After all updates are gathered on a global pending update list they are
executed document-wise. Before any changes are applied, compatibility tests
either ensure a positive outcome of a query or yield an error code and abort

the process.

In principle the execution of a query is divided into three stages.

1. Parsing of a query and detection of static errors.

2. Testing compatibility of primitives for each database to ensure atom-

icity (ACID).
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3. Applying updates and propagate changes to persistent storage. Serial-

ize documents created with fn:put.

Additional information on step one is beyond the scope of this work, but

further details can be looked up in [6].

4.4.1 Checking Constraints

Some tests can only be performed after our global PUL is complete. XDM
constraints may be hurt at times during the query process. However, after
evaluation all accessed documents must be in a valid state. Thereby the

following statement is perfectly correct:

doc.xml:
<a id="0"/>

query:
insert node attribute {"id"} {1} into /a,
delete node /a/@id

As all update primitives are accumulated and held pending, the position
of a statement within a query has no effect on the time of execution. The
above query may lead to a temporarily duplicate id attribute. Still, with the

original attribute being deleted, the final result is valid.

Error codes are divided into two categories. Static errors are a result of the
parsing process and can be detected at an early stage. Contrarily the detec-
tion of dynamic errors is connected to input data. As an update expression
changes structure and values of our input documents, some errors of this
kind can be found only after all update primitives are collected. These errors

include:

e concurrent operations Two rename statements on the same target

have an undefined outcome.

e duplicate attributes See example above.
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e namespace errors Connecting the same prefix for different nodes

with an ancestor- or descendant- relationship to different URIs.

e applying fn:put on lost node identities Target nodes and their an-
cestors may not be deleted, which is detected by traversing the ancestor

axis for each root node to be serialized.

Spoken casually, if no one pulls the plug BaseX conforms to the ACID prin-

ciples.

e atomicity At the end of a query either all operations are executed or

documents are left unchanged.

e consistency All accessed documents are in a consistent state before

and after query evaluation.

e isolation Among unrelated updating queries one doesn’t effect the
result of another which is ensured by a scheduler (not scope of this

work).

e durability Changes on database nodes are persistent.

Of course errors can still occur while updating a database. Things like media
failure, operating system- or code-induced errors are common threats for a
database system. At this point having no sophisticated recovery or restore
mechanisms, BaseX can guarantee atomicity and durability only to a cer-
tain extend. Future work regarding these advanced features is discussed in
Chapter 6.

4.4.2 Execution Example

To sum up our previous efforts this section provides a simple example for a

query evaluation. Figure 4.2 shows the execution tree for the given query:

delete node doc('docl.xml')/a/b/g,

insert node doc('docl.xml')//n

as first into doc('docil.xml')/a/b,

replace node doc('doc2.xml')/cc with doc('docl.xml')/a/n,

rename node doc('docl.xml')/a/b as 'NewName'
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The height of the corresponding execution tree is 4. Level 2 contains distinct
documents and fragments that are accessed by the query. On the child axis
of each document we find database nodes being target of pending updates.
Sorting these nodes from high to low pre values ensures that updates are
applied bottom to top and target pre values remain valid. Update primitives
are finally appended at leaf-level and apply to the order of updates, stated
in figure 3.2.

Execution finally comes down to a pre-order traversal of the tree. Each time
we hit a leaf, changes are made effective. The tree is actually traversed twice:
On the first pass primitives are tested for compatibility to ensure atomicity

and consistency.

Pending Update List

AN

docl.xml doc2.xml fragments
pre=7 pre=2 pre=45
delete rename as I(in()sf(l:;ocl xml)//n replace with
'newName' as ﬁ-rst doc('docl.xml)/n

Figure 4.2: execution tree

4.5 Insert Before Statement

Our simple and elegant updating technique, as described above, is in conflict
with the insert before statement. Using the be fore modifier in an expression
with a target node n, the source nodes are added on the preceding sibling
axis of n. The pre value of n itself is therefore increased by the number of

inserted nodes, as they occupy lower pre values. Ultimately, eventual replace
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or delete statements operating on the same node cannot be executed as they

follow in the order of updates.

Let s be the number of inserted nodes, n our target and p the target’s pre
value. One simple solution would be to increase p by s for all following update

operations on n.

4.6 Text Node Merging

Delete and insert operations may lead to adjacent text nodes. The XQuery
data model forbids this. Using our update protocol, detection of adjacent text
nodes takes some extra effort. During update execution we cannot perform
structural changes on pre values lower than the current update position. This
would cause a shift of nodes on disk that are ahead on our updating schedule.
Pre values as node identifiers would be virtually useless as a result. It is also
not possible to merge two text nodes with one of them being target of an
update primitive not yet applied. For example, if a text node ¢ is inserted
after a text node p, these two nodes are adjacent. If £ and p, which is also
target of a delete primitive, are merged immediately, the value of ¢ is lost
with the deletion of p.

We have to make sure merges do not propagate to lower pre values. Keen
observation reveals that text node adjacency is only present among siblings.

Merging nodes parent-wise generates little overhead but solves the issue (4.3).

This also shows the way updates are applied document-wise:

1. Update primitives are applied for each target node of a document,
starting with the highest pre value PRE.

2. PAR is the parent of PRE. All update primitives that have a target
which is a child of PAR are applied. FIRST holds the lowest pre value
among the children of PAR, which is target of a "replace’, “insert before’,
insert after’ or ’‘delete’. These update types can lead to text node
adjacency that can not be resolved on the fly. ’Insert into’ statements
are not a problem, as all other updates on the child axis have already

been performed.



4. Implementation 24

3. If such an update has been performed and FIRST is therefore greater
than -1, adjacent text nodes are merged as soon as the current child-
axis of PAR is left.

As axis changing triggers the merge process, the current solution carries the
risk of traversing a distinct child axis multiple times. Yet, being not the

general case, this is tolerated as other solutions are memory-consuming.

applyUpdates (DOCUMENT)
PAR <- null
FIRST <- -1
for all updates PRE in DOCUMENT:
NEXTPAR <- parent (PRE)
if NEXTPAR not PAR:
if FIRST > -1:
mergeTexts (PAR, FIRST)
FIRST <- -1
PAR <- NEXTPAR
applyUpdates (PRE)
FIRST <- structuralUpdateOnSibling(PRE)
mergeTexts (PAR, FIRST)

mergeTexts (PAR, START)
if START == 0:
return
MAX <- PAR + size(PAR)
P <- START - 1
while P < MAX - 1:
if P is element:
P += size(P)
else if P is text and kind(P + 1) is TEXT:
merge(P, P + 1)
else:
P++

Figure 4.3: merging text nodes

4.7 Fragment Processing

As updates are not visible during a query, the renaming statement has no

persistent effect on our document, see figure 4.4.

The XQUF does not distinguish between fragment and database nodes as a

target. True to the nature of a fragment, updates during a query are non-
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let $n := <a><n/></a>
return (
rename node $n as 'b',
insert node $n into doc('doc.xml')/n

doc.xml:
<n>
<a><n/></a>
<n/>

Figure 4.4: updating a fragment

persistent and therefore not visible at all. Adding the fact that compatibility
and data model checks cause some overhead it’s only consequent to skip
the processing of fragment updates altogether. Unfortunately, documents
serialized with fn:put are an exception to the rule as they reflect the results

of a snapshot.

Our implementation of the transform expression helps us to fill this gap.
We first create a main memory database instance of the nodes in the copy
statement and apply all updates in the modify statement on this instance.
The result is immediately visible and can be serialized with fn:put or passed

on to other expressions. An example is given below.

let $n := (copy $t := <a><n/></a>
modify rename node $t as 'b'
return $t)

return insert node $n into doc('doc.xml')/n

doc.xml:
<n>
<b><n/></b>

<n/>

Of course, this approach is limited as we keep our temporary database in
main memory. However, these database instances are expected to be small

in general.



Chapter 5

Performance

5.1 Test settings

Goal of this test was to determine the overall performance and scalability
of our approach on varying database sizes. The XMark benchmark [11] pro-
poses a combination of an XML document together with an assortment of
queries, that test the overall real-life performance of a system. As a lot of im-
plementations adopted this testing strategy during the last years, it seems a
good starting point to gain knowledge about update performance as well and
to generate comparable results. Queries and documents used are explained

in detail below. Documents were created using the XMark generator with

scaling factors of 0.001, 0.01, 0.1 and 1.0.

Operating System

Linux-openSuse 11.1 64-Bit

Processor 2x Intel(R) Xeon(R) CPU E5345 @
2.33GHz, 8 cores

Memory 33GB RAM

Secondary Storage | 919.4 GB

Java Version

OpenJDK Runtime Environment 1.6.0

Table 5.1: computing machine specifications

Tests were performed on the given machine 5.1 using the client- and server-
architecture of both systems. Execution times for the documents 110KB.xml

and IMB.xml were measured 20 times in a row. As processing took a lot

26
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longer for the files 11MB.xml and 111MB.xml, the number of runs was lim-
ited to 10. BaseX was tested with version 6.2.5. For each combination of
document size, query and database, the shortest execution time of all runs
is listed in 5.3.

On a side note, running the tests with BaseX assigning no additional memory
for the Java Virtual Machine (-Xmx flag) did not reveal any differences.
Running single threaded, BaseX does not benefit using eight cores instead

of one.

Document ‘ Input Size ‘ Nodes ‘ #item ‘ #date / 4 ‘ # runs ‘

110KB.xml 113 KB 3290 22 22 20
1IMB.xml 1134 KB 33056 217 252 20
11MB.xml 11396 KB | 324274 2175 2324 10
111MB.xml 111 MB | 3221926 21750 22545 10

Table 5.2: XMark test document properties

5.2 MonetDB

MonetDB/XQuery [2] is an open source XML database and developed at the
Centrum Wiskunde & Informatica, the national research center for mathe-
matics and computer science in Amsterdam, Netherlands. It features the
powerful Pathfinder engine, which is introduced in Chapter 2, to speed up
query processing. MonetDB has been chosen for its similar storage layout

and efficient query processing.

There are certain differences that will later help to explain our test results:

1. Instead of pre/size/distance values, MonetDB uses pre/size/level. While
this is of importance for query performance, it will have a minor effect
on the performance of structural updates. In certain cases there is a
slight advantage. The distance values of following siblings need not to

be updated if a subtree is inserted or deleted.

2. In contrast to BaseX, attributes are not in-lined but stored separately.

Thus performing structural updates on attributes is expected to be
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faster, as they are usually small in number and the main table is not

accessed at all.

3. MonetDB differs between read-only and updatable databases. Similar
to BaseX, the table is divided into pages holding a fixed number of
tuples. These pages may contain gaps in between tuples. Creating an
updatable database also gives the possibility of leaving empty space
for later insertions on each page. The default configuration (10 % of

document size) is used for benchmarking.
4. MonetDB keeps a mapping between pre values and node ids realized

by holding a view on the original table with pages in logical order.

Queries for MonetDB are altered to support the slightly outdated 'do’ syntax
and to reference the document which is to be updated. For example, inserting
a node in MonetDB looks like this:

do insert <test/> as last into doc('xmark')//item/name

Calling ‘Mclient —version‘ returned the following information:

MonetDB server v4.38.5 (64-bit), based on kernel v1.38.5 (64-bit oids) Re-
lease Jun2010-SP2

5.3 Test Queries

site

N

regions categories catgraph people open_auctions closed_auctions
{Africa,...} open_auction closed_auction
Item initial price

Figure 5.1: structure of XMark documents



5. Performance 29

Figure 5.1 visualizes part of the structure of all XMark documents. With the
exception of the category, people and catgraph elements, all child nodes of

the site element contain date elements on their descendant axis.

To get a general feeling for updating performance, the chosen test queries

fall into several categories:

e Structural update at a single location. The execution time for

single updates is taken at the beginning, in the middle and at the end
of a document (Q1, Q2, Q3, Q4).

e Structural updates at multiple locations. This category results
in a large amount of disk access as multiple pages in different physical
locations are affected. (Q6, Q7, @8, Q9, Q7b) are especially chosen to
explore the boundaries of BaseX and MonetDB running on high-end
systems. These queries provoke the worst case and will help to identify

weak points.

e Non-structural updates at multiple locations. The rename ex-
pression is used to test value updates. This is secondary as value up-
dates are fast to perform (Q5).

Single Location Updates

Q1 . insert node (//item)[1] as first into /site

Q2 . insert node (//item)[1] as last into /site

Q3 . delete node (//item)[1]

Q4 . let $i := //item return delete node $ifcount($i)]

Multiple Location Updates

Q5 . for $i in //item return rename node $i as "newName"
Q6 . delete node //item/name
Q7 . for $i in //item return insert node <test/> as last into $i

Q7b . let $regionscopy := (copy $s := /site/regions modify (for $i

in $s//item return insert node <test/> as last into §i) return $s)
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return replace node /site/regions with $regionscopy Only tested for
BaseX as MonetDB lacks support for the transform expression. The regions
element, which is an ancestor of all target nodes, is copied. Hence, all updates
are performed in main memory. Ultimately the original regions element is

replaced with the updated main memory database.

Q8 . for $i at $p in //date where $p mod 4 = 0 return delete node
$i Date elements are spread over the document as descendants of regions-,
open_ auctions- and closed_ auctions- elements. Using the Tree Map visual-
ization of BaseX helped identifying the date element as the most suitable

target for distributed structural updates.

Q9 . delete node //item/@id

5.4 Results

110KB.xml || 1MB.xml || 11MB.xml 111MB.xml

Q || BX \ MD || BX | MD BX MD BX MD
1 2 211 1 326 1 312 2 1256
2 1 61 1 72 1 172 2 1152
3 1 48 1 61 1 150 3 1123
4 1 56 1 69 3 476 20 44306
5 1 46 3 59 16 179 181 1490
6 4 65 24 | 245 || 1262 | 2553 || 114761 68883
7 3 341 37 | 3315 || 2410 | 44528 || 230706 | 1643838
8 5 66 46 284 || 2887 | 2786 || 274811 73465
9 4 41 27 49 || 1218 152 || 110760 1224
b 6 42 607 98464

Table 5.3: Benchmark results, time in milliseconds

5.5 QObservations

Single location updates. Although only a single item element is deleted,
the execution times for Q3 and Q4 vary widely from each other with increas-

ing document size. Due to lazy evaluation, finding the last item element takes
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1000000
100000 M BaseX q1
Il BaseX g2
10000 ] BaseX g3
%) [l BaseX g4
E 1000 W BaseX g5
g [0 BaseX g6
= 100 H BaseX q7
[ BaseX g8
10 H BaseX q9
D [' [0 BaseX q7b
110KB 11MB 111MB
document size
Figure 5.2: test results of BaseX
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Figure 5.3: test results of MonetDB

considerably more time than finding the first one. Regarding Q3, as soon as
the first item element is found the evaluation part stops and updates are
applied. In contrast, to find the last item element during execution of Q4,

21750 nodes are accessed using document 111MB.xml.

There is no measurable difference between the results of Q1 and Q2, as the
same target node is accessed. Calculating the exact insert location for Q2

takes constant time using pre and size values of the site element.

Updating multiple locations. Insert operations (Q7) take more time
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BaseX / MonetDB
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Figure 5.4: comparing results for BaseX / MonetDB

than delete operations (Q6). Deleting a single node effects only a single
page. BaseX closes gaps on pages whereas gaps are allowed with MonetDB.
This explains the bigger difference between insert and delete for MonetDB.
Inserting a single node may effect several pages. As existing tuples are shifted

to a new or the following page this results in longer execution times.

Attributes. Regarding Basex, attribute nodes reside on the main table.
Operation time is therefore similar between Q6 and Q9. As MonetDB keeps

attributes separately execution takes a lot less time.

Value Updates. Updating the value of a node has no effect on the structure
of a document (Q5). Adding the new QName to the tag index and changing
the tag id for each item element takes little time. Therefore overall execution
time is short and grows linearly with the number of updated nodes. As, again,
more than 20 000 nodes are accessed using document 111MB.xml, execution

takes more time than for a single structural update (Q1-Q4).

Scalability. Whereas updating a single location of a document reveals

no bigger issues, multiple location updates lead to a super-linear increase of
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processing time, see figure 5.4. MonetDB shows a similar behavior for inserts,

yet it performs faster on deletes - but at the price of more fragmentation.

BaseX performs very well on single location updates (Q1-Q4) with Q4 form-
ing a sole exception, accessing more nodes to determine the target. Even for
larger documents, the answering time is almost unmeasurable and within the

range of very few milliseconds.

This once again comes down to the highly optimized architecture of BaseX.
We cannot stress enough that BaseX is developed to answer queries in the

most efficient way we can think of. We try to ensure this by:

e Maintaining a minimal set of features. BaseX does what it is sup-
posed to - and nothing else. This does not mean we sacrifice features for
the sake of performance. Our implementation of the XQUF completely
meets the requirements including namespaces, XDM consistency and

exception handling.

¢ Building customized data structures. All core data structures
are built from scratch to serve their individual purpose including lists,
hashing structures and trees. This ensures minimized memory usage

and maximizes efficiency.

e Working with primitive data types. Strings are slow. Byte arrays
are used for everything character-involved including query parsing, ta-

ble representation and more.

e Rigorously optimizing back end code. For example bit-shifting

and logical operators are used wherever possible.

e Using no external libraries.

This way we can ensure that start up time is as short as possible. To an-
swer a query, BaseX parses and compiles the query, opens the corresponding
databases, consults indexes to find node ids and finally accesses these nodes
on disk via calculating their offset. It must be considered that measurements

already include the time for parsing, compilation, evaluation and printing.

As expected, with growing database size and multiple location updates, ad-

vantages, regarding execution time, melt away and the overall performance
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becomes I/O dominated. Looking at some numbers for the 11MB.xml file
explains the super-linear increase of execution time for Q6 to Q9. For the
combination of Q6 and 11MB.xml, 2175 name elements are deleted. The last
Jitem/name element in document order has 114 444 as a pre value. With
256 tuples on each page, the first 448 pages contain 5 of these elements on
average (2175 / 448 = 4.9). Currently, updates on a PUL are not aggregated
before execution. Each update primitive is therefore applied separately. Con-
sequently the first 448 pages are written to disk 5 times in a row. Aggregating
updates for each page could improve performance considerably and is further

discussed in Chapter 6.

Increasing page size to 1024 tuples also showed some success. Using the same
calculations as above, now 20 /item/name elements reside on the first 111
pages. For instance, the execution time for Q6 and 111MB.xml decreased by
19%. With MonetDB, a logical page holds 65536 tuples in default. Together
with more advanced caching, this could explain the results of BaseX and

MonetDB, lying closer together with growing database size.

A further feature comparison between BaseX and MonetDB reveals some

more differences:

e If structural updates are applied with BaseX, the mapping between
id and pre values is lost and indexes become invalid. Resolving this
takes some extra time, whereas MonetDB does this on-the-fly. A fast

solution is currently developed.

e MonetDB offers a write-ahead-logging that guarantees both, atomicity
and durability. Extending BaseX with a similar mechanism is discussed
in Chapter 6.

e MonetDB cannot guarantee consistency using XQuery Update. For
example, duplicate attributes and adjacent text nodes are not de-
tected automatically. The only issues regarding BaseX are durability

and atomicity, which are discussed in Chapter 6.

Although performing admirably, BaseX still offers a lot of potential for op-
timization and uses very little resources by the way. Looking at table 5.1

might give the impression that XQuery Update produces a high amount of
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overhead. In fact, BaseX performs well, even on low-specification machines.
As said before, assigning no additional memory and using one core instead

of 8 did not reveal any differences.

Updating queries Q1-Q9 are simple and do not generate large intermediate
results. Nonetheless Q6 to Q7 are especially chosen to slow down our testing
system and, by no means, simulate real life application. Common use cases
are no challenge for BaseX and yield excellent results on almost any system.
In addition, feedback from the user community attested very fast execution

of updates as well.

Main memory approach. As expected, the main memory approach takes
less time (Q7b) and reduces page access. Whereas for Q7 all shifts are per-
formed directly on disk, Q7b transfers this expensive operation to the main
memory. As BaseX uses little memory in general, using the transform ex-
pression to process bulk updates is to be considered. On the other side the
regions element is locked to prevent concurrent access. BaseX currently uses
a locking scheme that works on transaction level. Being not an issue at the
moment, locking low-level nodes might prevent using advanced concurrency
control at a later time. However, execution time of Q7b is expected to be
even better after optimizing the replace expression which is also discussed in
Chapter 6.



Chapter 6

Future Work

6.1 Overview

There are numerous ways to improve performance of updating queries. As
the purpose of a database system is to not only handle small amounts of
data, but serve multiple clients at a time, features like locking-, restore-
and recovery- mechanisms have to be added to the equation. Locking and
concurrency is beyond scope of this work. Weiler already provides a glimpse

on this in his master-thesis [12].

This chapter gives an overview and proposes some solutions that may help

to kick-start future work. Sections cover the following:
1. Ways to support a programmer using XQuery Update by detecting
unnecessary operations and applying further optimizations.
2. Revealing weak points and provide solutions based on our test results.

3. Discussion on advanced, yet indispensable features like restore and

recovery.

36
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6.2 Optimizations

6.2.1 Fragmentation

Frequent structural updates lead to fragmentation. Gaps on pages after
delete operations, or appended pages behind existing ones, as result of an
insertion, are forms of fragmentation. Consequently, the answering time of
the database system increases, as more pages have to be accessed. In times
of low workload, a fragmented database could be copied tuple-wise to resolve

this issue.

For example, this can be implemented as a stand-alone operation or be in-
cluded as part of a backup command. The database itself is not only copied
block-wise, but optimized during the process as it is written to a new location
on disk. Gaps on pages are filled up and pages reside on permanent storage
in document order. To save resources, the database would not have to be
copied as a whole. Using the PUL to our advantage, we could keep track
of the lowest pre value P, that has been affected by updates since the last
defragmentation. Optimizing the table is subsequently limited to the logical
page that contains P and all following pages.

If heavily fragmented, answering times would improve considerably. Basi-
cally, the operation comes down to serializing the current database state and
parsing the document subsequently. Processing times for serialization and

shredding can be omitted though.

In addition free block bitmaps can help to curb fragmentation in advance.
Inserting a subtree it is not always necessary to append a new page behind
all other pages. Unused blocks are the result of previous delete operations
for example. A free block bitmap keeps track of unused blocks. Thus it at-
tempts to reduce data fragmentation by storing individual blocks of a file
in a consecutive manner if possible. This kind of storage management helps

delaying the costly defragmentation process.

6.2.2 Optimizing the Pending Update List

With an increase of query complexity, the possibility exists that an update
statement contains unnecessary operations. This includes not only opera-

tions on node-level, but on document-level as well. Updating and renaming
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the same node during a snapshot ends with the node being deleted (see ’or-
der of updates’, figure 3.2). While this example can be detected easily, the
hierarchical nature of our data complicates the issue. If a node n is deleted
or replaced, all update primitives, that have a descendent of n as a target,
are without effect. Depending on document size and complexity, updating
transactions can be expensive. Identifying superfluous operations is therefore

of importance.

Thanks to the customized table encoding of BaseX, this can be taken care
of without adding any overhead at all. Before updates are applied, the PUL
aggregates all pending node state changes. We now apply the following steps:

1. Sort the PUL ascending, depending on the pre values of the target

nodes.
2. Start with the first pre value P.
3. If P is not target of a delete or replace, skip to the next value.
4. Otherwise determine the size S of P. S is the size of P and its subtree.

5. Delete gradually each following pre value on the sorted PUL, that falls
within the range of P and P + S - 1, as these nodes are descendants
of P.

6. Continue with step 3 and the next value or stop, if the last value is

reached.

Using the size column of the table, pre values within a subtree of any node
are detected easily. Let n be the size of the PUL. Applying this algorithm
takes O(log n + n) time, including sorting and linear traversal of the list.
In addition, the amount of page access correlates with the number of nodes

that are replaced or deleted.

6.2.3 Block-wise replace

Currently the replace operation is a compound of delete and insert. That
means pages are accessed twice during a replace. Query 7b for example could

profit a great deal if I/O is reduced. One solution is to overwrite existing
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nodes explicitly. Up to now, replacing a node together with its subtree is
slower than it should be. First, nodes are deleted and possible gaps on the
page are filled by shifting following tuples. After this, inserting the new tree

results in an additional shift of following tuples.

Yet, the concept of pages to reduce shiftings on disk can be easily exploited.
If the number of replaced nodes is equal to the number of inserted nodes,
tuples could be replaced sequentially. If the two trees are of different size,

the following has to be done:

1. Locate the page and position p of the node to be replaced.
2. Let ¢ be the smaller tree (insert, delete) and s its size.

3. From position p to p+s-1 overwrite the original tuples with the new

ones in document order.

4. If t is the tree which is replaced (hence the smaller one), insert the
remaining nodes of the insertion tree at p+s. Tuples might have to be

shifted and/or one or more new pages appended.

5. Else if t is the insertion tree, delete the remaining nodes of the original

tree. Tuples might have to be shifted and/or one or more pages deleted.

6. Update the size value of ancestor nodes.

Using main memory for expensive updates could further profit from this
solution. This has already been tested with Query 7b (see Chapter 5).

6.2.4 Page-wise updates

Taking a closer look at the test results revealed that mostly unnecessary page
access is responsible for super-linear scalability. This is especially true for up-
dates changing the structure of a document in multiple locations. Block-wise
replacing is a way to reduce I/O for certain situations. A similar approach
that builds upon this helps optimizing all kinds of structural updates. The
basic idea is to summarize operations for each logical page and execute them
as a unit. Structural updates would not cause shiftings on disk any longer,

but are performed in main memory. A first step is to divide the PUL into
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sections with each section containing the pending changes for a logical page.

Yet, we are facing several complications:

1. Affected update locations For convenience we take the largest sub-
tree of a document to explain this issue. The root node together with its
descendants occupies all pages of a table. If a node is added to the root via
an ’insert into’ statement, an update primitive is created which target node
has 1 as a pre value. Obviously, this pre value is not necessarily the location
which the actual update is applied to. New nodes are added behind existing

ones.

Up to now, the PUL helped organizing node state changes using the pre
value of targets as identifier. As shown before, this simplified to meet speci-
fication requirements regarding XDM constraints. The elimination of unnec-
essary operations (tree-aware updates) is also based on this. Unfortunately,
the page-wise aggregation of updates requires knowledge about the actual
locations where structural changes are applied. We therefore have to intro-
duce a mapping between target pre values and affected pre values. With pre
as a target the following table shows the actually affected position for each

expression:

operation ‘ affected position ‘
rename pre

insert before / after pre-1 | pre+size(pre)
insert into as first / last | pre+1 / pre+size(pre)
replace pre

delete pre

This knowledge can be used to sort the PUL with regards to affected posi-
tions. Updates can then be aggregated for each page.

2. Updates on non-existing subtrees Updating the subtrees of deleted or
replaced nodes is another issue. As we apply updates bottom-to-top, target
nodes on the preceding axis of our current target are updated at a later
point. Allowing this increases page access. Deleting superfluous primitives

has been explained before, see the section about tree-aware updates.

3. Subtrees spanning several pages Applying the algorithm for tree-

aware updates makes sure that unnecessary operations are removed from
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the PUL. Still, there is the possibility that a node is deleted which spans
more than one page. Take an element node for instance together with its pre
value P. S is the size of P. Deleting P requires the following steps:

1. Determine the logical page of P and its position L on this page.

2. From L onwards delete all entries from the current page and write it
back to disk.

3. Delete the following pages that are completely occupied by nodes that

are descendants of P.

4. On the last page which contains part of the subtree of P, delete these
nodes and shift following nodes to the beginning of the page. Write
page back to disk.

After clearing things up, applying page-aware updates becomes simple:

1. Apply tree-aware-updates algorithm.
2. Calculate the affected pre value for each update primitive.

3. Determine the corresponding updates for each logical page and create
a list L for each target page. For example, a page holds 256 tuples. If
the affected pre value of a primitive UP is 260, UP is added to L of
the second page.

4. Sort all L descending.

5. Read the page which corresponds with the first L.

6. Apply updates on this page in main memory bottom-to-top.

7. Write page back to disk.

8. Continue with the next L.
What exactly is the benefit of this strategy? Using the PUL, the calculation
of affected pre values requires linear time with regards to the number of

update primitives. So far, if a logical page is target of multiple updates, it is

written to disk individually for each atomic change. That basically wastes a
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lot of I0. Some calculations on this are given in Chapter 5. Another benefit
of page-wise updates is the simpler detection of adjacent text nodes, see
Chapter 4. As pages are touched only once, this can be taken care of in

memory without adding additional IO like the current solution.

However, only future tests will reveal the actual benefit of this approach.
This is due to caching mechanisms on hardware- and operating-system level,

together with BaseX being developed in Java.

6.3 Rollbacks and Recovery

Things can go wrong at every time. Thus rollbacks and recovery mechanisms
are important for a database system. The ACID principles are a guideline
for this. BaseX currently provides a basic restore mechanism, that enables
the user to restore backed up databases. Providing a certain security, more
or less data gets lost if a database is rendered unreadable and not backed
up regularly. Depending on the size, saving a database state can take a

significant amount of time and is not suited for regular use.

First we have to define what types of errors are likely to occur and which are
of interest for us. The main goals, regarding development of BaseX, are sim-
plicity and efficiency. As today’s systems get more and more complicated and
diverse terminology leads to increasing confusion, I deem necessary returning
to more basic work for reference. Some time ago, Haerder and Reuter made
an effort to clear things up by providing a terminological framework describ-
ing recovery schemes for transactional database systems [9]. In principle they

divide database failure into three categories:

1. Transaction Failure A transaction has to be set back, because it is
not committed regularly. For example a deadlock can lead to one or

more transactions that need to be rolled back.

2. System Failure is caused by code errors or hardware failures. ’Some-
one pulling the plug’ falls into this category. Contents of main memory

are lost in effect.

3. Media Failure describes fatal damage (i.e. head crashes) and damage
caused by operating systems or controllers to secondary storage. Sheer

redundancy helps to prevent data loss.
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BaseX guarantees isolation using a locking scheme that allows parallel access
for read-only transactions. If a transaction changes the state of a document,
all other transactions are put on hold. This eliminates the risk of deadlocks

and dirty reads completely.

Every snapshot is treated as a separate transaction. By definition, a database
is in a consistent state before and after the successful execution of a snapshot

[4].

So the only principles endangered by database failure are atomicity and

durability.

Rollbacks make it possible to undo transactions that have not been com-
pleted regularly. The current locking scheme eliminates situations that re-
quire a rollback. Hence this feature does not contribute to ACID conformity.
But it could be misused to help a user abort expensive transactions. Prepar-
ing page-aware updates leaves us with a sorted PUL regarding the affected
positions of a document. If a transaction is aborted, the PUL helps to revert
changes that have already been applied. Effects of update primitives are re-
versible. To stop a transaction, complements of already applied node state
changes on the PUL have to be carried out in a top-to-bottom manner. This
way we can keep pre values as identifiers. An undo presumably takes about
the same amount of time as the initial execution. It is only beneficial if the

user consciously wants to abort expensive transactions.

Recovery on the other hand is substantial. Using BaseX, data can only be
lost in case of a system or media failure. Common solutions that are used
in other systems include a base version of a database together with a log
file, which stores successfully finished transactions in a sequential manner.
Facing a failure, the database is restarted and a working copy of the original
database created. Re-applying logged transactions then leads the database

back to its most recent state before crashing.

BaseX already creates a log file if the server/client architecture is used. It
is not sufficient to write a transaction together with its query statement to
the log file. To prevent dirty reads for example, source information has to
be stored as well. Therefore a log file not only consists of the statements.
XDM instances of copied nodes and new values need to be stored as well.
Furthermore XQuery Update enables the user to access multiple documents

within a single query. As a result, multiple databases can be destroyed by
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the same transaction. A log file must consequently be kept for each database
individually. Another thing worth considering is to store log files in a different

physical location. Otherwise media failure can be fatal.

Adding a recovery component can turn out to be expensive. Each primitive
together with its source data is to be serialized in advance. Worst case, this
means that complete documents are written to disk before anything else
happens. Moving this operation to the end may save some time. Recovery
itself can also take a considerable amount of time, depending on scale and
complexity of the application. A solution that performs faster on the recovery
part is probably in conflict with the highly efficient nature of BaseX. Page-
wise versioning for example helps faster backups, but is more difficult to

realize.



Chapter 7

Conclusion

Goal of this thesis was to extend a cutting-edge native XML database with
the widely accepted updating standard XQuery Update. It was possible to
add the new module in a way, that it does not negatively interfere with the
existing system. Conforming to the standard, the implementation is fully

applicable in a productive environment and yields impressive test results.

To reach this goal, the basics of a native XML database system were ex-
plored. With a sequential encoding scheme, based on a pre-order traversal of
the document tree as the foundation, further analyzation of the XQUF re-
vealed several points of interest. The special table encoding of BaseX leaves
room for optimization. Structural document changes can be carried out in a
bottom-to-top manner, which renders updating of the pre-id mapping within
a transaction unnecessary. On the other hand, some features of the standard
complicated the implementation process. Simple and efficient solutions were
provided for text node adjacency and usage of the “insert before’ statement.
The proposed architecture is compact and efficient and therefore exhibits the

same qualities as the rest of the system.

Benchmarking attested excellent results for real-life application. Queries, es-
pecially designed to explore weak points of the current solution, revealed

super-linear scalability for multi-location structural changes.

Whereas the query part works close to the limits, manipulation of data takes
more time than it could. Performing each atomic update individually, logical

pages on disk are accessed more often than necessary. Page-wise aggregation

45
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of updates together with tree-aware updates could therefore improve perfor-
mance by magnitude. An algorithm is proposed, that exploits the sequential
table encoding once more to its full advantage. Other optimizations include
a free block bitmap, that optimizes the allocation of new logical pages and

a solution to curb fragmentation of the database.

Fulfilling the ACID properties is vital for a database system. With the in-
tegration of a basic and efficient recovery mechanism in the future, BaseX
fully conforms to this principle and is well equipped to serve data-critical
and time-critical applications. Whereas a basic solution can be added eas-
ily, a more sophisticated approach not only requires more time. It has to
be decided, whether BaseX wants to follow this route. Simple solutions may
suffice, as BaseX has not been designed for highly concurrent environments.

The same applies for an advanced way to handle concurrency.
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