
Using Map and Reduce

for Querying Distributed XML Data

Lukas Lewandowski

Master Thesis in fulfillment of the requirements for the degree of
Master of Science (M.Sc.)

Submitted to the Department of Computer and Information Science
at the University of Konstanz

Reviewer:

Prof. Dr. Marc H. Scholl

Prof. Dr. Marcel Waldvogel

http://nbn-resolving.de/urn:nbn:de:bsz:352-188823

Abstract

Semi-structured information is often represented in the XML format. Although, a vast

amount of appropriate databases exist that are responsible for efficiently storing semi-

structured data, the vastly growing data demands larger sized databases. Even when

the secondary storage is able to store the large amount of data, the execution time

of complex queries increases significantly, if no suitable indexes are applicable. This

situation is dramatic when short response times are an essential requirement, like in

the most real-life database systems. Moreover, when storage limits are reached, the

data has to be distributed to ensure availability of the complete data set. To meet this

challenge this thesis presents two approaches to improve query evaluation on semi-

structured and large data through parallelization. First, we analyze Hadoop and its

MapReduce framework as candidate for our distributed computations and second, then

we present an alternative implementation to cope with this requirements. We introduce

three distribution algorithms usable for XML collections, which serve as base for our

distribution to a cluster. Furthermore, we present a prototype implementation using a

current open source database, named BaseX, which serves as base for our comprehensive

query results.

iii

Acknowledgments

I would like to thank my advisors Professor Marc H. Scholl and Professor Marcel Wald-

vogel, who have supported me with advice and guidance throughout my master thesis.

Thank you also for the great possibility to work in both the DBIS and the DISY depart-

ment and for provisioning a comprehensive workplace and all necessary work materials.

Also I would like to thank Dr. Christian Grün and Sebastian Graf for the many helpful

discussions regarding my research work, the technical support especially concerning Ba-

seX, and the interesting insights into the challenging life of a researcher.

This work was supported by the Graduiertenkolleg Explorative Analysis and Visualization
of Large Information Spaces, Computer and Information Science, University of Konstanz.

I would like to thank the Graduiertenkolleg for its worthwhile support.

I also want to thank Patrick Lang and Oliver Egli for the possibility to study with them.

Both have become very good friends during the last years and both were good teammates

during my studies. Special thanks goes to Anna Dowden-Williams for numerous useful

comments to this manuscript. Thanks also to Michael Seiferle, Alexander Holupirek and

the rest of the BaseX team for the nice time at the DBIS group. Of course, I want to

thank also Sebastian Belle, Thomas Zink, and Johannes Lichtenberger for the helpful

ideas and discussions concerning my thesis.

Finally, I want to thank my parents for their great support and the financial help through

my studies. Special thanks also goes to Susanne for her understanding and support.

v

Contents

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Outline . 2

2 Preliminaries 3

2.1 Semi-Structured Data . 3

2.2 Collections of XML Documents . 4

2.3 XQuery . 5

2.4 MapReduce . 6

3 Related Work 9

4 Querying and Distribution of XML Data using Hadoop and MapReduce 11

4.1 Hadoop and XML . 11

4.2 Prototype . 12

4.3 Results . 14

4.4 Conclusion . 17

5 Querying and Distribution of XML Data in an XML Database 19

5.1 MapReduce Framework vs Map and Reduce in an XML Database 19

5.2 Distribution . 20

5.2.1 Architecture . 20

5.2.1.1 Distribution Algorithms 21

5.2.1.2 Partitioning and Packaging 22

5.2.2 Prototype . 23

5.2.2.1 BaseX REST API . 23

5.2.2.2 BaseX Client API using Sockets 24

5.2.2.3 Importance of Chunk Sizes 25

5.2.2.4 Bulk Import of whole XML Collections or Subcollections . 25

vii

Contents

5.2.3 Results of our Collection Distribution Approach 26

5.2.4 Challenges . 30

5.2.5 Conclusion . 31

5.3 Querying . 32

5.3.1 Architecture . 32

5.3.1.1 Coordination and Book Keeping 33

5.3.1.2 Map Process . 34

5.3.1.3 Reduce Process . 34

5.3.2 Prototype . 35

5.3.3 Results . 36

5.3.4 Scalability with the Top 10 Example 44

5.3.5 Challenges . 44

5.3.6 Conclusion . 46

6 EXPath Packaging and Example Workflow using BaseX 47

6.1 EXPath Packaging System within BaseX . 47

6.2 Distributed Querying . 48

6.2.1 Map execution . 49

6.2.2 Reduce . 51

6.2.3 Reduce Extension . 52

6.3 Challenges . 56

6.4 Conclusion . 57

7 Future Work 59

7.1 Distribution . 59

7.2 Querying . 60

7.3 Updating . 60

7.4 More . 61

8 Conclusion 63

Appendix 64

Bibliography . 64

List of Figures . 68

List of Tables . 70

viii

1 Introduction

1.1 Motivation

Semi-structured data like XML is widely used for example as data exchange format, mes-

sage format like SOAP [GHM+07], configuration files, logging, or even as storage format

in companies and public institutions. Advanced XML databases like BaseX, Treetank or

eXist-db are designed to store XML and evaluate queries performing complex data analy-

sis on many XML files, but when data is growing fast, several issues must be considered:

Firstly, reliability using replication techniques and data availability. Secondly, an essen-

tial point is information retrieval. When the size of available information is growing, the

time of performing complex queries on the data is increasing due to many I/O accesses.

This is still true even, if several indexes are applied due to the size of indexes that do not

fit in commodity main memory and have to be swapped out. Furthermore, many updates

require to rebuild or update the existing index structure consuming a lot of time for large

data collections. Thirdly, concurrent read and write operations slow down query perfor-

mance when many clients try to access a single database due to locking of database

instances. In a distributed storage environment load balancing achieves more concur-

rent reads and writes. Moreover, the whole distributed database is not locked. Fourthly,

when database sizes exceed the computer storage limit, either additional storage must

be added or data has to be distributed to several computers. In most relational databases

there are several approaches for distribution based on row or column partitioning, but

XML has a hierarchical structure making distribution more difficult. XML databases can

be divided into two groups: very large XML instances, having to be fragmented based

on several splitting algorithms considering the structure of an XML document and large

collections of small XML files where XML files have no complex structure. Distributed

querying is a challenge in both cases because of the dynamic nature of XQuery expres-

sions. This master thesis focuses on distribution and querying of large XML collections

consisting of many XML files due to the fact that most XML files have sizes of only some

MB. Furthermore, large XML instances are often constructed of many records on child

1

1.2. Contribution

level, which can be easily transformed to XML collections.

1.2 Contribution

Since the requirements of a complete distributed XML database system are comprehen-

sive, this thesis is not able to cover all components. Hence, the focus is on distribution

and querying of XML collections using an XML database as backend. The main contri-

butions of this elaboration are:

• Analysis of the usability of Hadoop’s MapReduce framework for XML query evalu-

ation.

• Introduction of an own implemented distribution and querying approach with per-

formance evaluation.

• Integration into an XML database using the example of BaseX.

1.3 Outline

This master thesis is organized as follows: Chapter 2 introduces some basic knowledge

on XML collections, XQuery and XML databases. Chapter 3 distances this work from

other related research approaches. In Chapter 4, we describe the author’s first approach,

the Hadoop MapReduce approach. Chapter 5 depicts the alternative approach consid-

ering distribution and querying of XML collections in detail, and it introduces some

optimizations. The results and the performance evaluations of the implemented proto-

type are also presented in Chapter 5. Chapter 6 describes the integration into BaseX

and depicts an example query workflow. In Chapter 7, we give a preview of the planned

future work. Finally, a conclusion completes this master thesis in Chapter 7.

2

2 Preliminaries

2.1 Semi-Structured Data

Semi-structured information is not as powerful as structured information - or isn’t it?

Information that is strongly structured has a defined schema, which allows assigning

data types to all information. In a relational world, we first define a schema for the data

we want to store. Afterwards, the data is mapped to the defined schema and stored in

the database. The eXtensible Markup Language (XML), introduced in [BPSM+08], is

a hierarchic semi-structured format for exchanging information. One important benefit

of XML is that it does not necessarily need a defined schema to store information in a

database. The exchange format can contain meta information about the structure, e.g.,

data types, to describe all carried information. Furthermore, XML allows to type data as

mixed content, e.g., to mix up further meta information within a text paragraph. It is also

possible to omit data typing in the exchange format itself for example to allow a database

implementation to type the information dynamically. It is therefore not possible to state

that semi-structured information is weaker than structured information, but it allows

a more complex data definition than in classical relational structured models. Another

important XML property is the ordering of elements in the tree representation, which has

to be satisfied also when an XML document is fragmented and distributed. Relational

databases are partitioned in most cases horizontally or vertically as stated in [CNP82]

and [NCWD84] when the database has to be distributed to several server instances due

to the defined data table schema. XML is much more difficult to partition [Gra08].

An XML structure is not regular by default. Depending on the carried information, an

XML tree can have a text oriented structure, a document-centric file or a data oriented

structure, a data-centric XML file. Thus, XML fragmentation must use the most suitable

partitioning algorithm depending on the structure of the tree. A sample comparison of

both, relational database partitioning and XML partitioning is depicted in Figure 2.1.

In the context of XML databases the storage representation of an XML document obvi-

ously also has an impact on the fragmentation techniques. One of the most often chosen

3

2.2. Collections of XML Documents

F1 F2

F3

(a) XML partitioning.

horizontal partitioning

vertical partitioning

(b) Relational table partitioning.

Figure 2.1: Fragmentation of documents based on tree structure and relational table.

storage representations is in fact a table representation of the initial document, i.e., Ba-

seX [Grü10] uses such an approach. Consequently, some could suggest to not partition

the XML representation, but to partition the storage table. This approach works well

for a particular database implementation, but is not a universal approach for others, es-

pecially for not-table storage representations. Furthermore, even if all implementations

would use a table representation, we would obtain a high coupling between the tables

and the distribution approach. Each change of the storage representation needs an ad-

justment of the table distribution algorithm as well. Hence, this thesis does not focus on

relational table partitioning.

2.2 Collections of XML Documents

A collection of XML documents is a group of assigned documents identified by a URI.

By default the order of retrieving documents from a collection is completely implemen-

tation dependent. In [MMWK10] the XQuery and XPath 2.0 fn:collection function is

introduced, which allows accessing collections and documents through the query lan-

guages. Furthermore, the fn:collection function is stable by definition. Repeated calls to

this function will return the same result. In BaseX both, a collection or a single docu-

4

2.3. XQuery

Collection of XML Documents

...

Figure 2.2: XML Collection.

ment is mapped to a database instance. Thus, it is possible to store an XML document

as database and later add additional documents. As stated in [Grü10] large single doc-

uments are rare. Most XML files have the size of only few MB. However, collections of

similar XML documents reach sizes of several GB or even TB. Furthermore, if several

different collections on a database server exist, distribution must be considered. As this

situation is more common, this master thesis focuses on querying and distribution of

XML collections. Therefore, partitioning techniques for single documents, as introduced

in section 2.1, are not elaborated in detail, but this master thesis’ approach serves as a

basis and can also be extended to single document partitioning, as well. An example of

a collection of XML documents is depicted in Figure 2.2. In real-life, a collection of RSS

feeds could serve as base for, e.g., text analysis.

2.3 XQuery

The XQuery language, as specified in [BCF+07], is the de-facto standard for advanced

querying in XML context. One special fact of XQuery is that it allows to address several

XML documents or collections from one XQuery expression residing in the case of dis-

tribution on several database servers. Therefore, identifying databases is first feasible

during compile time. Furthermore, XQuery expressions are able to choose document or

collection names dynamically. When using such complex dynamic features in a query ex-

pression, identifying responsible databases and therefore responsible database servers,

is a prerequisite to enable parallel evaluation of sub queries on the different database

servers. Since it is possible to address several databases and collections in one query ex-

5

2.4. MapReduce

pression, a completely parallel evaluation of all sub queries is not guaranteed, because

sub queries could require results from its predecessor query to evaluate their own query

expression.

2.4 MapReduce

MapReduce was first introduced by Dean and Ghemawat in [DG04] and is currently

adopted in many distributed systems. It is a model for parallel and distributed com-

putation. The model mainly consists of two functions: map and reduce, which have to

be implemented by the user. Figure 2.3 depicts an overview of the used architecture.

The map function receives data from a local machine as two input parameters, a key

as identifier and a value as record (Input and Map Phase). Afterwards, the map func-

tion performs a user-defined computation on the record and outputs the result as new

key-value-pair. All results from the map functions, corresponding to the same key, will

be appended to a list of values. This is the transition between the Map Phase and the

Reduce Phase. This new list of key-value-pairs serves during the reduce phase as input

parameter for the reduce functions. The user defined reduce function analyses the list

of values and computes the complete result that is returned to an output file.

All map and reduce functions will be executed in parallel on worker nodes containing the

necessary data. The data has to be partitioned into key-value-pairs (records) to serve

as input for the MapReduce job. Furthermore, a combiner can be defined by the user

to support a local reduce-like function to avoid unnecessary network communication

between each map and reduce function. A central job tracker is coordinating all MapRe-

duce jobs and takes additional bookkeeping to ensure correct and finite job execution.

Additionally, the MapReduce framework ensures a failure-free job execution even when

a working node dies, e.g., as consequence of a hard disk failure. A detailed description

of the MapReduce idea is given in Chapter 4.

6

2.4. MapReduce

map(key,value)
 return list(key',value'))map(key,value)

 return list(key',value'))map(key,value)
 return list(key',value'))

map(key,value)
 return list(key',value'))map(key,value)

 return list(key',value'))map(key,value)
 return list(key',value'))

map(key,value)
 return list(key',value'))map(key,value)

 return list(key',value'))map(key,value)
 return list(key',value'))

worker node 1

worker node 2

worker node n

reduce(key',list(value'))
 return list(value'')reduce(key',list(value'))

 return list(value'')reduce(key',list(value'))
 return list(value'')

worker node 1

reduce(key',list(value'))
 return list(value'')reduce(key',list(value'))

 return list(value'')reduce(key',list(value'))
 return list(value'')

worker node m

...

Input records

...

Input records

...

Input records

...

Output records

...

Output records

Input Map Phase Reduce Phase Output

Figure 2.3: MapReduce architecture.

7

3 Related Work

Distribution and querying of distributed data is an often discussed topic in the research

area of relational databases. Extensive work has been done on horizontal and vertical

fragmentation of relational data as in [CNP82] and [NCWD84]. Kossmann [Kos00] in-

troduced several approaches how distributed data processing is managed in a relational

world.

Single XML documents have another structure than relational data. Their tree structure

must not be balanced and thus, fragmentation is not always possible as data organized

in tables. Several researchers considered the problem of XML fragmentation: Bonifati

and Cuzzocrea [BC07] introduced an approach based on structural constraints of the

XML tree. One example constraint, the width, is defined in advance to perform frag-

mentation. Depending on the defined values the fragmentation quality varies. Bremer

and Gertz [BG03] presented a schema-based fragmentation approach considering the

element tag occurrences in the tree. They also describe the possiblity to query the dis-

tributed XML data using only a subset of XPath. Abiteboul et al. [ABC+03] introduced

a different approach, in which static XML documents are distributed and dynamic con-

tent is injected using web services. In [GKW08] the authors presented various split

algorithms for XML documents. The PostorderSemSplit achieved good results, but no

algorithm performed optimally for all XML document types.

There are several approaches focussing on querying the distributed XML data [BF05,

PM02, BCFK06], but none of them uses the complete XQuery standard as querying lan-

guage.

When considering the NoSQL ideas, Hadoop and its MapReduce framework are identi-

fied as most used distributed computing framework within research. Several approaches

are based on Hadoop and MapReduce to solve, e.g., indexing or information retrieval

problems [KATK10, ZZYH10, VCL10]. Their focus is solving problems on large data

sets, but they do not consider query response times for database query performance,

which are in general in milliseconds. Furthermore, only few approaches can be applied

for XML querying. Only Khatchadourian et al. [KCS11b] support MapReduce execu-

tion using XQuery (ChuQL). They extended the XQuery language to define MapReduce

9

processes, which will be executed on top of Hadoop. In [KCS11a] they presented an

interesting approach and their evaluation results for a large XML data set of several

hundred GB. The performance was quite good, but they do not focus on minimal query

execution time of distributed XML data.

XQuery is the de-facto standard for complex querying within XML data. There are also

approaches implemented directly on top of an XQuery processor. The Distributed XQuery
(DXQ) idea is one of the most interesting and introduced in [FJM+07a] and [FJM+07b].

The authors extend the XQuery specifcation by DXQ grammer extensions to support dis-

tributed querying based on XQuery expressions. One advantage is that one does not

have to use a distributed file system like the approaches based on Hadoop. The focus

of the DXQ approach is to offer web services implemented in XQuery to support appli-

cations like their introduced Domain Name System (DNS) resolution example. They do

not focus on querying large XML data sets and they do not present any experimental

results. Since there is an intersection of ChuQL, DXQ and our proposed approach, the

following table provides an overview about similarities and differences. Values in brack-

ets are not known.

Characteristics ChuQL DXQ Our Approach

Distribution out of XQuery Yes. Yes. Yes.
Extension of XQuery language No. Yes. No.

EXPath support No. No. Yes.
XML database support No. No. Yes.

Implementation architecture similarities No. (No.) (No.)
Experimental results Yes. No. Yes.

Delegation of reduce step Yes. No. Yes.
Querying of large distributed data Yes. No. Yes.

Table 3.1: Differences between ChuQL, DXQ and our approach.

10

4 Querying and Distribution of XML Data using

Hadoop and MapReduce

4.1 Hadoop and XML

There are three main principles in distributed environments to fulfill the distribution of

data: a centralized approach with a master node that is responsible for the coordination

of the network, a decentralized approach where all network nodes are equal and respon-

sible to forward requests, and a hybrid approach of both where, e.g., sub networks are

coordinated by one master node and the master nodes are connected through a peer-

to-peer network. Each of the introduced approaches has strengths and weaknesses con-

cerning several topics like single point of failure, performance or robustness. Currently,

no free available open source XML databases like BaseX, Treetank or exist-db, support

distribution of large XML collections or documents to a cluster. One possibility is to im-

plement a classic distributed principle as mentioned before from scratch. On the other

hand, XML databases belong to the NoSQL section as depicted in [Edl11], and currently

there are several distributed computation models and distributed databases. The most

common one is Hadoop [Fou11], which consists of a distributed file system (HDFS) and

the computation model MapReduce. Hadoop’s HDFS and MapReduce framework APIs

are written in Java and are based on Google’s Google File System (GFS) and MapRe-

duce [GGL03, DG04]. HDFS is responsible to distribute data through a master node

to data nodes. The master node is responsible to coordinate requests and manages the

free resources on each data node. Furthermore, the master node is not responsible for

transferring data to the data nodes from a client. Its assignment is to locate responsi-

ble data nodes and to provide data node locations to the HDFS client program. The

client program then distributes the incoming data to the data nodes. Thus, the master

node is only responsible for coordinating requests, managing of storage availability, and

for storing snapshots in case of a master failure. In such a failure a new master node

will be initialized with the data from the last snapshots. The distributed data is by de-

fault organized in block sizes of 64 MB. MapReduce is responsible to perform parallel

11

4.2. Prototype

computation on the several data nodes containing the distributed data. The map func-

tion receives records from the data node as key/value pairs and the computation results

are written as intermediate results to the output and distributed and replicated through

HDFS. The reduce function receives all intermediate results associated with a key and

performs result aggregation, which is written to the final output and distributed and

replicated as well.

The original idea was to use Hadoop’s MapReduce framework to extend native XML

databases with distributed querying techniques. Therefore, a prototype with Hadoop

was developed and evaluated against an alternative implemented centralized REST

[Fie00] approach, based on JAX-RX [GLG10], to compare distribution of XML files and

querying afterwards. In the next section both prototypes are described in detail.

4.2 Prototype

Since this thesis focuses on large collections of XML documents, HDFS was configured

to retrieve a folder containing all XML files as input used for the distribution. HDFS

distributes these files to the data nodes, one file per block as long as the file is smaller or

equal than the defined block size. Furthermore, HDFS ensures replication with a factor

of three and load balancing in the distributed file system. After distribution, MapReduce

is performed to evaluate queries on the distributed XML files. To ensure the XML well-

formedness, each XML document is mapped as one single map input record. The XML

document path specifies the input key. The XML record is imported in either Treetank,

BaseX or Saxon and the query is evaluated on each document within this map function.

The results are written as intermediate output. The reduce function collects all query re-

sults and prints the complete result to the output. Figure 4.1 depicts this initial situation.

In phase 1, the XML input files will be distributed to the data nodes. The NameNode is

responsible for allocation of free blocks on the data nodes and sends the block locations

to the client node, labeled with the arrows 1 and 2. The client node then writes its input

to the corresponding data node, depicted as arrow 3. Afterwards the written block will

be replicated through the data node, see arrows 4. Thus, single hard disk failures do not

affect the Hadoop execution.

In phase 2, a MapReduce job is initialized for each input file. The client sends its MapRe-

duce request to the Job Tracker, see arrow 1. The Job Tracker allocates the data position

12

4.2. Prototype

Name
Node

Data block

Data Nodes

Client
Node

r/w request

r/w operation

Job
Tracker

Map/Reduce
function

Task Trackers

Client
MapReduce

Program

Job Client

HDFS

...

Phase 1 Phase 2

XML
Database

1
2

1
2

3 3

4

4

4

4

Figure 4.1: Phase 1: Distribution of XML input files via Hadoop’s HDFS. Phase 2:
Importing of distributed XML files to XML databases.

in HDFS where the written map and reduce functions needed to be stored, arrows 3 and

4. Afterwards, Task Trackers are assigned to perform the map and reduce computation

on the local machines. The map function receives as input one single XML file and im-

ports it to the local XML database. The reduce function is responsible to write a list of

all stored XML files in the XML databases. When a query has to be performed, another

MapReduce job must be initiated as depicted in phase 2 of Figure 4.1. The map function

evaluates the query on the local XML database and writes the query result as intermedi-

ate result to the output. The reduce function receives the query results and combines all

to the complete results.

The second idea was to use a REST based implementation for distribution and querying

XML files. This prototype is also a centralized approach with master/slave dependencies

like Hadoop. A designated master node consists of a REST interface for incoming client

queries and XML documents for distribution. The master node is using a hash map for

addressing the data nodes. Distribution is performed in round-robin manner to each

registered data node. Each XML file is sent by the master node to one or more data

nodes through an HTTP PUT or HTTP POST request. On the data nodes, a web server

listens for incoming requests and performs importing of new XML files to Treetank or

BaseX. Queries are sent in parallel from the master node to all data nodes through an

HTTP GET or HTTP POST. The results, evaluated by the data nodes are sent back to

the master node. The collected results are combined and forwarded to the client. This

situation is illustrated in Figure 4.2.

The results of the comparison are described in the next section.

13

4.3. Results

Input
XML

Collection
XML

Distributer

Query
Distributer

(HTTP Server)

... ...

Data Nodes
(HTTP Server)

Data Nodes
(HTTP Server)

Client

XML Database

Query Q

Q
Q

Q
Q

Q

Query Result R

R

Figure 4.2: a) distribution of XML collections through a master node. b) querying the
distributed XML sub collections.

4.3 Results

The first evaluation was performed with Saxon in main memory and without any XML

database to omit I/O accesses during map and reduce execution. For test purposes, a

collection of 10,000 small XML files (200 MB), each about 20 KB size, was distributed

with Hadoop. Afterwards, Saxon’s query processor evaluated a test query, searching for

a special text content, on each XML file (map function) and wrote the query result as

intermediate result to the output. Then, the reducer collected all sub results and com-

bined them to the complete result. The test was executed on four virtual Linux Debian

computers with 1 GB RAM each. This 200 MB collection was evaluated in approx. six to
seven hours on a four data nodes cluster instead of only few seconds or milliseconds.

To analyze the long execution times of the MapReduce functions several amounts of

empty map and reduce functions are evaluated on different data node cluster sizes.

Figure 4.3 describes the results of the empty MapReduce execution. Each test was per-

formed ten times and the averages were used in the diagram. Only one map and reduce

function (one distributed input file) needed at least 25 seconds. The execution does not

grow significantly between 1 and 40 input files, but afterwards, it increases linearly with

the number of input files. 100 map jobs on three data nodes needed about 120 seconds

and 1000 map jobs on a cluster of ten nodes needed about 590 seconds. These results

show that MapReduce is not able to cope with many input files and the execution time is

not comparable with database execution times, where query results have to be evaluated

in milliseconds or few seconds. This large overhead for executing MapReduce functions

is due to following issues:

• For each input file at least one MapReduce job is needed.

14

4.3. Results

• Each MapReduce job is maintained by the Job Tracker node.

• MapReduce job sends progress to Job Tracker node.

• The user defined map/reduce function will be sent as jar file to at least 10 data

nodes (jar size is important for network traffic).

• Task Trackers send each 2-3 seconds a heartbeat to the Job Tracker and afterwards

they get a new job assigned.

• Task Trackers read the user jar from HDFS and copy it to the working directory of

the Task Tracker.

• For each map and reduce function a new JVM will be initialized.

• Reducer does not start before all map functions have been executed successfully.

• Intermediate results from map functions will be written to HDFS to ensure persis-

tence when some Task Tracker dies.

• Final results will be written to HDFS, too.

1 10 100
0

20

40

60

80

100

120

140

3 Datanodes

6 Datanodes

10 Datanodes

Map Jobs

ti
m

e
 [

s
]

Figure 4.3: MapReduce evaluation on different data node cluster sizes.

To cope with the many small files Hadoop problem, sub collections with sizes smaller than

or equal the Hadoop chunk size (64 MB by default) were created in a pre-processing

step. Afterwards, the sub collections were distributed to the cluster. The MapReduce

jobs then must consider collectionsize
chunksize input files. In the map functions the distributed sub

collections are imported into Treetank and BaseX. The reduce functions collect meta in-

formation about stored XML files and write this meta information to the output. To com-

pare distribution times with an XML database cluster, three collection sizes (1 GB, 10 GB

15

4.3. Results

and 25 GB) were generated with XMark [SWK+02] and analyzed with four distributed

approaches and one local BaseX instance for reference. The distributed approaches are

designed as follows:

• Hadoop 64 MB Chunks: The standard chunk size as described above.

• Hadoop 256 MB Chunks: Increased chunk size to 256 MB.

• REST Single File: The REST distribution approach as described in Figure 4.2 a,

where no chunk size is defined and each small input file will be distributed to a

data node.

• REST 64 MB Chunks: The REST distribution approach, where sub collections of

sizes of about 64 MB are distributed to data nodes.

This situation is depicted in Figure 4.4. As expected, a local import into an XML database

as BaseX (Local BX) has the shortest import execution time. Hadoop 64 MB and 256 MB

chunk size approaches perform distribution and XML import in almost the same time.

The REST approaches differ from each other. The REST Single File approach loses a lot

of time for opening and closing an HTTP connection. The REST 64 MB Chunks approach

performs similar to Hadoop distribution.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Local BX

REST Single File

REST 64 MB Chunks

Hadoop 64 MB Chunks

Hadoop 256 MB Chunks

Collection Size [GB]

ti
m

e
 [

s
]

Figure 4.4: Comparison of importing XML collections to BaseX in a distributed and
non-distributed environment.

As mentioned above, query evaluation within MapReduce is too slow and therefore use-

less for database query needs. As a consequence, the REST Query Distributer performs

querying, which is presented in Figure 4.2b. For test purposes three queries have been

designed to measure distributed query evaluation (distributed on eight heterogeneous

physical data nodes) compared to local query evaluation.

Q1: count(/site/regions/africa/item[location/text()=’United States’])

16

4.4. Conclusion

1 GB Collection

Q1 Q2 Q3
0

20

40

60

80
Distributed

Not Distributed

ti
m

e
[s

]

(a) 1 GB XMark collection.

25 GB Collection

Q1 Q2 Q3
0

500

1000

1500

2000
Distributed

Not Distributed

ti
m

e
[s

]

(b) 25 GB XMark collection.

Figure 4.5: Query execution on 1 GB and 25 GB XMark collection in a distributed and
non-distributed environment.

Q2: count(/site/regions/descendant::item[quantity/text()>1])

Q3: count(/site/descendant::text[. contains text ’prevent’

using stemming])

Q1 describes a simple XPath query matching for a particular text node (applying a text

index). Q2 describes another simple XPath that searches for nodes with integer values,

which are above a certain constant. Q3 is a full text query using stemming, which

matches nodes containing a particular string using stemming functions. As can be seen

in Figure 4.5, with regard to query execution times, small collection sizes do not benefit

from distribution except for Q3. This is due to the used text index, which has a constant

execution time. Q3 does benefit from distribution, because of a missing full text index.

In (b), all queries benefit from distribution due to the larger collection size, where the

text index is too large to fit into main memory, when using commodity computers for

the cluster. The queries are surrounded with the count XPath function to reduce network

traffic to guarantee that distributed querying time is mainly to query evaluation and

creating network connections between the client and the servers.

4.4 Conclusion

The above section analyzed the usability of Hadoop’s MapReduce framework for XML

database distribution and querying features. The first results showed that Hadoop can-

not cope directly with many small files as input for its MapReduce execution. This is due

to the fact that Hadoops JobTracker initializes a new job for each input file and is respon-

sible for all managing concerns of these jobs. If there are millions of input documents,

17

4.4. Conclusion

there are also millions of states to manage and numerous map steps will be executed.

To solve this problem, the second approach created sub collections with sizes smaller

than the chunk size of Hadoop. This idea solved the problems with many small files.

Thus, distribution to XML databases became possible with good results. Using Hadoop’s

MapReduce framework to query the distributed sub collections is not beneficial, because

of the overhead of MapReduce jobs execution. Therefore, querying was performed with

an implemented REST prototype with good results.

Hadoop’s MapReduce framework performed well for distribution of XML databases. The

REST distribution approach performed not as fast as Hadoop, but with a similar perfor-

mance. Hadoop is delivered as a comprehensive package and is not easy to extend and

in order to tune to receive faster execution times. Furthermore, users are dependent on

bugfixes and improvements from the software provider. In contrast to our alternative

implementation like the REST distribution approach, it is almost always feasible to im-

prove performance, e.g., to switch the network protocol whenever beneficial. Thus, all

upcoming approaches will neither consider Hadoop’s MapReduce framework for distri-

bution nor the querying of XML data and base on new implemented prototypes.

18

5 Querying and Distribution of XML Data in an

XML Database

5.1 MapReduce Framework vs Map and Reduce in an XML

Database

There are several interesting ideas in the MapReduce framework introduced in [DG04]

that serve as basic ideas for the approaches introduced next. These are mainly parallel

evaluations of queries on different sites in map processes and combining their results in

combiners and reducers as well as its speculative execution approach. MapReduce fea-

tures like storing intermediate results on the secondary storages or shuffling between

map and reduce are omitted or redefined. This is due to the fact that BaseX evaluates

most queries in milliseconds or only few seconds. Furthermore, large XML data is dis-

tributed on manageable cluster sizes and not on XML clusters beyond 100 servers. Thus,

failures will occur not as often as on really large clusters to justify persistence of each

intermediate map results on the local hard disks.

Our BaseX’ map and reduce approach is defined as follows: The map process is evaluated

in parallel on all responsible data nodes in the cluster. The map functions are written

by the user as XQuery file, which is distributed to the cluster. Within the XQuery file

the user can access all documents and collections located on the data server. Therefore,

we do not constrain the user to work on one particular database or collection. The re-
duce process collects all intermediate results from the map XQuery files. These results

serve as input for the user defined reduce functions provided as XQuery files. Reduce

functions can be executed as local combiner on each data server as a preprocessing step

and globally to combine all intermediate results. The following table outlines the key

differences between Hadoop MapReduce and our approach.

The next section introduces the distribution of XML collections within BaseX. It focuses

19

5.2. Distribution

Characteristics Hadoop MapReduce Our Approach

Map and reduce function distribution via Java Jar file. XQuery file.
Parallel map execution Yes. Yes.

Replication Yes. No.
Storing intermediate results to hard disk Yes. No.

Shuffeling Yes. No.
Failure tolerant Yes. No.

Queries on Records. On database server.
Reduce function Yes. Yes.

Table 5.1: Intersections and differences of our map and reduce approach in
comparison to the Hadoop MapReduce framework.

on identifying convenient data servers and building chunks of documents for distribu-

tion. BaseX’ map and reduce architecture is introduced after the distribution section.

5.2 Distribution

This master thesis focuses on querying distributed semi-structured data, in particular

distributed XML collections. We introduce one possible architecture for the distribution

of an XML collection. Partitioning of large XML collections consisting of small XML

documents is similar to horizontal fragmentation in relational world and thus, most

relational techniques are applicable as well.

5.2.1 Architecture

As introduced in Chapter 1, a distribution architecture can be a centralized, decentral-

ized or a hybrid approach. We decided to choose a centralized approach for XML collec-

tion distribution. The reasons for such a decision are that centralized approaches have

less overhead for meta-data organization related to data server and database states. Fur-

thermore, it is less complex to coordinate query routing to responsible data servers and

collection of query results. Load balancing is managed with little expense as well. On

the other hand, such a decision leads to a potential single point of failure or a possible

bottleneck if many clients have to interact with the coordinator. To cope with this chal-

lenge our approach moves from a central architecture to a hybrid approach during this

chapter, where all data nodes act as coordinator nodes. This architecture is depicted in

Figure 5.1

As depicted in the Figure 5.1 a user client application contains an XML collection that

must be distributed. The collection is transmitted to the Coordinator. The Coordina-

20

5.2. Distribution

Coordinator

...

Data Server

Client

XML Collection

User Feedback

Meta InformationXML Database

Figure 5.1: Distribution architecture.

tor knows all available XML data servers in the XML cluster and their states. The XML

documents that are contained in the collection, are traversed and distributed by the

coordinator server to the XML data servers defined by an algorithm. The different distri-

bution algorithms are introduced below. During distribution, the coordinator sends the

state of the distribution process to the user client application.

5.2.1.1 Distribution Algorithms

The first approach focuses on distribution in a round-robin manner. Each input docu-

ment is directly distributed to an XML data server. The advantage of this algorithm is

that the XML collection is distributed in a uniform way. Each data server contains the

same amount of documents. Large XML collections are queried in parallel because all

data servers contain one part of the collection. On the other hand, this algorithm also

has disadvantages. First, if the collection is small, i.e., 1 MB, the collection is distributed

like collection
#documents , which is a huge overhead for querying a small XML collection at a first

glance. Second, if all collections are uniformly distributed to all data servers, all collec-

tions become useless if one server is no loner available.

Algorithm 1 RoundRobinDistribution(collection: Collection)

1 for doc in collection do
2 srv ←next(SERVERS)
3 distribute(doc, srv)
4 end for

21

5.2. Distribution

The second approach solves the above situation by using additional meta information

about collection size and the amount of contained documents and information about all

data servers. It first checks the size and the amount of contained documents to detect

the amount of potential data servers. Afterwards, it inspects the available free space

amount of the XML data servers to obtain an approximate uniform storage distribution.

The available free space amount of each data server is calculated periodically. One

disadvantage of this algorithm is, i.e., that 95% of a collection is distributed to one

server and the remaining 5% to the next server if the collection size is only few MBs

larger than the defined threshold based on the server meta information.

Algorithm 2 AdvancedDistribution(collection: Collection, meta: ServerMetaData)

1 if collection.SIZE < meta.RAMSIZE then
2 distribute(collection, getFreeServer())
3 else
4 servers←getSortedServers()
5 subcolsize← 0
6 srv ←next(servers)
7 for doc in collection do
8 if (subcolsize + doc.SIZE) < meta.RAMSIZE then
9 subcolsize← subcolsize + doc.SIZE
10 distribute(doc, srv)
11 else
12 srv ←next(servers)
13 subcolsize← doc.SIZE
14 distribute(doc, srv)
15 end if
16 end for
17 end if
18 meta.Update()

5.2.1.2 Partitioning and Packaging

It is beneficial to distribute a collection with additional meta information about server

configurations and states. Furthermore, it should be considered to execute the dis-
tribute() function only once for one target data server to avoid unnecessary network

communication in particular for opening and closing network connections. Therefore,

we open for each server the network connection and send all selected documents in

one run, by checking the size of each document and adding it to the defined server. Af-

terwards, the connection is closed. This improvement depends on the chosen network

22

5.2. Distribution

protocol and yields small to large speed upgrades.

5.2.2 Prototype

The prototype we present uses BaseX[Grü10], a native XML database and XQuery pro-

cessor, as backend for our XML collections on each data server. BaseX offers two network

communication interfaces: a Java Client API, directly using sockets and a REST interface

over HTTP. In the following, we consider the concrete implementation of BaseX’ network

protocols as base for our evaluation. We decided to use the Java programming language

for our distribution and querying prototypes because of its cross-platform support, but

the fundamental approach in this thesis is also applicable to nearly all other program-

ming languages. The prototype uses the above introduced algorithms for distribution.

Furthermore, it supports distribution directly via sockets or REST using HTTP1. Both

approaches are described in the next sub sections and the performance is analyzed in

the section Results. The class diagram shows the structure of the distribution implemen-

tation.

distribute(collection, name, algorithm)
client: Client

Runner

distribute(collection, name, algorithm)

<<interface>>
Client

+distribute(collection, name, algorithm)
service: DistributionService

RestClient

+distributeRoundRobin(collection, name)
+distributeAdvanced(collection, name)
+distributePartitioned(collection, name)

DistributionServiceBaseXClient

+distribute(collection, name, algorithm)
-distributeRoundRobin(collection, name)
-distributeAdvanced(collection, name)
-distributePartitioned(collection, name)

basex: BaseXClient
SocketClient

Figure 5.2: Distribution implementation.

5.2.2.1 BaseX REST API

In the class diagram, the Runner class decides, which Client implementation is used for

the execution of our distribution process. In the REST case, the RestClient is used for

1We use in this thesis the terms sockets and REST over HTTP for the concrete protocol implementation
used by BaseX.

23

5.2. Distribution

distribution. This class implements the method distribute(collection, name, algorithm)
and decides, based on the algorithm parameter, which distribution is executed. It del-

egates the execution to the DistributionService class, which implements the algorithms

based on the HTTP protocol. The distributeRoundRobin(...) method distributes, as in-

troduced above, each document by initiating an HTTP call to the responsible XML data

server. We developed an improved version sending chunks of documents with only one

connection to one particular data server; see section 5.2.2.3 for more information. Ba-

seX accepts the PUT and POST requests, and adds documents to the new collection.

The distributeAdvanced(...) method checks the size of the collection and compares it

with the meta information corresponding to the data servers. If a collection is small

enough, it is distributed to only one data server; otherwise it is split to few data servers

as possible. The distributePartitioned(...) operation is a further optimization of the dis-
tributeAdvanced(...) algorithm. With distributeAdvanced(...), we obtain the problem that

if our collection is about 4.5 GB, but our main memory on each server has only 4 GB, our

collection is distributed to two servers with sub collection sizes of 4 and 0.5 GB respec-

tively, which should be optimized especially for queries that do not benefit much from

indexes. Therefore, the distributePartitioned(...) algorithm first checks how many sub

collection are needed, and partitions all sub collections with almost the same size. Our

example then yields two sub collections with approximately 2.25 GB sizes distributed to

two different servers.

5.2.2.2 BaseX Client API using Sockets

When the Runner class decides to use SocketClient as Client implementation, it calls the

distribute(collection, name, algorithm) method as well. Within the SocketClient we choose

the distribution method based on the algorithm parameter. distributeRoundRobin(...)
distributes each document in round-robin manner to a data server. The socket version

uses only one connection to a given data server and uses it for all documents correspond-

ing to the server. BaseX clients send commands through the API and wait for the server

response. The distributeAdvanced(...) method has the same functionality as in the REST

version with the exception, that we use only one connection to the server for all corre-

sponding documents. distributePartitioned(...) is implemented fundamentally equal to

the REST approach. For the communication with the XML data servers and thus, to the

BaseX servers we use a modified BaseXClient class version implemented by the BaseX

team.

There are some differences between the REST and the Java Client API over sockets

24

5.2. Distribution

within BaseX. It is possible by the Java Client API to add several documents to an exist-

ing collection over one socket connection. BaseX’ REST interface is designed to accept

only one document per HTTP request. Therefore, it is necessary to create a workaround,

if you need to send more than one document with one HTTP request, which is intro-

duced in the following sections. On the other hand, it is only possible with the REST

interface to automatically wrap results to ensure a well-formed XML result.

5.2.2.3 Importance of Chunk Sizes

As stated before, distributing each XML document with one separate HTTP call is ex-

pensive and not useful. Consequently, we have to omit to use many requests. One

possible solution is to use only one connection per server and to distribute all docu-

ments corresponding to a server as introduced in the algorithms distributeAdvanced(...)
and distributePartitioned(...). A challenge occurs, when an HTTP request fails because,

e.g., a data server connection disappeared for some moments. If we tried to send a sub

collection file with, for example 3 GB of content, we have to send it again from the

beginning. This problem does not occur in the pure socket version because we use the

BaseXClient implementation, a protocol implementation invented by the BaseX team and

described in [Wei10]. The BaseX command ADD adds each document separately to the

BaseX database or collection, since we call it for each document. Nevertheless, we hold

only one socket connection. To overcome this problem, we use several chunk sizes to

define the number of HTTP requests to one existing server. If we divide, e.g., our 3 GB

example in three packages and set the chunk size to 1 GB, we thus need three HTTP

calls. Therefore, if a network failure occurs during the third HTTP call, we only have to

resend the third package.

In the next sub section we present our results of our introduced different algorithms

with several data set sizes. Furthermore, we illustrate the results of our analysis using

chunk sizes with the REST approach.

5.2.2.4 Bulk Import of whole XML Collections or Subcollections

Currently, BaseX servers do not support importing whole collections in one client call.

This is due to the difficulties to extract file information from one stream required to store

a document with a corresponding URI. Therefore, we have to add documents using the

ADD command within the BaseX Java client or to execute an ADD operation with REST

for each document within a collection for the naive approaches. To enable chunked

25

5.2. Distribution

transmission of several documents a workaround was created. On the client side, we

create a new subcollection root element and add document elements as its children. The

document element contains a path attribute, which describes the document path for the

needed ADD operation. As child of document we add the content of one XML document

from the collection. Afterwards, we send the sub collection XML to the server. On the

server side, we store this XML file in a temporary database and execute an XQuery file

to create a new database, a collection of documents using the data from the temporary

database.

5.2.3 Results of our Collection Distribution Approach

We use five workstations to simulate our distributed cluster. All of them have two In-

tel(R) Core(TM) i7 CPU 870 processors with 2.93 GHz and 8 GB of main memory. Four

of the available workstations are used as data servers and one workstation is used as

coordinator. We use the New York Times Article Archive2 (NYT) as XML data set for dis-

tribution and querying. The NYT data set is a collection of small news article XML files,

where a common XML file has a size of approximately 10 KB. The structure of all XML

files in the collection is equal. An NYT XML article file with title European Union Warns
Google on Possible Violations of Privacy Law is depicted in Figure 5.3. The structure of

the XML file is regular and the tree has a level of six. The contents of the documents are

meta information, like the publication year, as well as full-text articles. We decided to

create several collection sizes, 43 MB, 110 MB and 1.2 GB to evaluate the performance

differences between the REST and the sockets approach. Furthermore, we present the

performance difference between performing REST requests for each document in a col-

lection and approaches, which use chunk sizes.

We use BaseX version 7.0.2 as XML database on all data servers and use either the REST

or the Java Client (sockets) approach for our distribution examples. We consider the

distribution execution time of our collections for our comparison of both network APIs.

Figure 5.4 depicts the comparison of the round-robin approaches. The round-robin sim-

ple approach distributes all documents to all available BaseX servers. As expected the

Java Client API performs better than the REST approach (a). This is due to the fact that

2It is available on the http://www.nytimes.com/ref/membercenter/nytarchive.html web site. This thesis
is supported by the Graduiertenkolleg, Computer and Information Science, University of Konstanz with
the focus on explorative analysis and visualization of large information spaces.

26

5.2. Distribution

Figure 5.3: Treeview of the NYT example document.

the initial REST distribution implementation uses one HTTP call for each document in

contrast to the Java Client API, which uses one connection per server. Unfortunately, the

REST API allows only to add new documents to existing collections by using one HTTP

call each. If we consider the 1,200 MB NYT collection, we notice about 146,000 XML

documents. The REST variant initializes 146,000 HTTP calls to distribute all documents

to the available cluster. This overhead of initializing an HTTP connection is an evident

drawback if there are many XML documents in our collection. Additionally, a second

drawback of the REST approach is identified. In contrast to the Java Client API the

REST variant performs an index update after each call. This implicates a lower distribu-

tion execution performance, if we increase the number of documents. The Java Client

API performs index updates first after a bunch of update requests. We increased the Java

Client API performance by setting the client property AUTOFLUSH to false and enforce

the flushing using the FLUSH property at the end of our distribution process. Thus, the

database buffers will not be flushed to disk after few updates.

The main reason for allowing only one document per HTTP request within the REST

approach is that we need additional information about the contained documents. The

27

5.2. Distribution

43 110 1200
1

10

100

1000

10000

100000

Socket
REST

size [MB]

tim
e

[s
] [s] 43 MB 110 MB 1200 MB

Socket 24.04 59.82 1048.82
REST 38.10 141.26 10698.96

(a) Round-robin simple approaches.

43 110 1200
1

10

100

1000

10000

Socket
REST (chunked)

size [MB]

tim
e

[s
] [s] 43 MB 110 MB 1200 MB

Socket 24.04 59.82 1048.82
REST

(chunked) 9.28 22.13 253.02

(b) Round-robin simple and chunked approaches.

Figure 5.4: Distribution using the round-robin approaches.

REST API adds a new document with a URI name identified by the request URL of

the PUT request. It is not possible to add two or more documents within one request,

because we cannot map it to one URL. Therefore, we decided to create a bulk-like

workaround for the REST approach to use also only one server connection as the Java

Client API. We wrap our documents with a subcollection root element node. Then, we

wrap each document with a document element node consisting of the attribute path con-

taining the document URI and the document itself as element content. Following, we

insert the document node as child to the subcollection element. We send our sub collec-

tion to the corresponding server. On server side, we create a temporary database for

our sub collection and start a refactoring operation to create a new database with the

original state, a collection of XML documents. The results of this REST workaround are

depicted in Figure 5.4 (b). In this situation, the REST approach outperforms the Java

Client API, although using also only one connection per server, which is due to the BaseX

protocol implementation, discussed later.

Figure 5.5 depicts the results of the advanced and the partitioned distribution algo-

28

5.2. Distribution

43 110 1200
1

10

100

1000

10000

Socket
REST (chunked)

size [MB]

tim
e

[s
]

[s] 43 MB 110 MB 1200 MB
Socket 14.84 39.89 1459.60
REST

(chunked) 9.21 21.21 341.37

(a) Advanced simple and chunked approaches.

43 110 1200
1

10

100

1000

10000

REST (chunked)
Socket

size [MB]

tim
e

[s
]

[s] 43 MB 110 MB 1200 MB
Socket 14.83 39.84 1602.46
REST

(chunked) 9.32 21.67 342.64

(b) Partitioned simple and chunked approaches.

Figure 5.5: Distribution using the advanced and partitioned approaches.

rithms. Both algorithms distribute the XML collection using server meta information

like the available server RAM size. If a collection is smaller than a computed thresh-

old, which considers the server RAM memory, e.g., operating system RAM reservation,

it is distributed to only one data server. Otherwise, it is distributed to few servers as

possible. The advanced does not consider uniform distribution. The partioned algorithm

distributes the collection uniformly to few servers as possible. In our test collection sizes

both algorithms work equal, because the collections are smaller than this defined thresh-

old and are stored on one data server. The distribution execution times are consequently

almost the same between (a) and (b). For both approaches we used the REST chunked

version, consisting of the created sub collection, as mentioned above. Again the REST

approach outperforms the Java Client API.

One interesting consideration was that we also have a performance loss when we com-

pare, for example the BaseX socket implementation for round-robin (RRS), advanced

(AS) and partitioned (P) approaches. RRS is slower for smaller collection sizes, because

29

5.2. Distribution

43 110 1200
1

10

100

1000

10000

AS
RRS

P

size [MB]

tim
e

[s
] [s] 43 MB 110 MB 1200 MB

RRS 24.04 59.82 1048.82
AS 14.84 39.89 1459.60
P 14.83 39.84 1602.46

Figure 5.6: Comparison of socket algorithms.

we switch the server for each document. AS and P were much slower with larger collec-

tion sizes, as presented in Figure 5.6. This is due to the fact that AUTOFLUSH is set by

default to true and index updates become more costly. We are able to solve this problem

by setting this property to false and flush manually. Another drawback, compared to the

REST chunked version is that although we use only one connection for both network

APIs, the Java Client API sends each document with a new request through the socket.

The Java Client API sends first a command, e.g., ADD, and afterwards the document to

the server. Furthermore the client API waits for a server response after each sent do-

cument, which contains information about the command execution. To overcome this

drawback, we created the same workaround for the Java Client API as for the REST ap-

proach and introduced the subcollection solution. A final comparison of the simple and

the chunked RRS versions is depicted in Figure 5.7. As in the initial situation, the Java

Client API performs best again. In contrast to the initial situation, the modified Java

Client and the REST APIs are more close together.

5.2.4 Challenges

If we do not consider the workaround solutions using the subcollection wrapping, the

Java Client API performs best. We are able to improve the performance by disabling

the AUTOFLUSH property on server side. The first challenge we retrieve is that we

must flush manually and define a threshold deciding when a flush has to occur. If we

perform flushing at a late point in time, we have a high probability of data loss. When

we execute a flush, e.g., after 10 updates, the performance will go down. If we use the

workaround solution, we must consider two further challenges: first, if we build one

document of a bunch of several XML documents and send it through the network, we

30

5.2. Distribution

Figure 5.7: Comparison of round-robin algorithms.

have to define the appropriate chunk size. We are able to send it completely in one

run, but the disadvantage is that if a network failure occurs we lose all documents and

have to resend everything. Thus, we define smaller chunk sizes for larger collections

than sending the whole collection at once. We defined the chunk size of 64 MB as base

for our distribution. Another challenge is that if we distribute large collection sizes,

the refactoring on server side becomes very costly due to the recreation of a complete

database to reconstruct the original structure.

5.2.5 Conclusion

We introduced three different distribution algorithms and evaluated them using the Ba-

seX Java Client API over sockets and BaseX’ REST approach over HTTP. Although, the

HTTP network protocol is able to have a similar performance as to communicate directly

over sockets, it is necessary to build workarounds to allow this using the BaseX imple-

mentations. The RRS distribution performed best for large data sets and the BaseX Java

31

5.3. Querying

Client API yield the best performance for the current implementation. We use therefore

the BaseX Java Client API also for our query distribution in the upcoming sections.

5.3 Querying

After successful distribution of an XML collection, we focus on querying the distributed

XML data. We concentrate our analysis within this thesis on queries without updating

operations due to time restriction of this master thesis. Querying XML data is not trivial,

because of the dynamic nature of XQuery, i.e., it is possible to open and query several

documents and collections out of an XQuery expression. Consequently, we decided to

be as nonrestrictive as possible. It is difficult to limit user XQuery expressions only

to one collection or document, because you have to parse the query in advance and

identify all documents. This becomes more complex if users decide dynamically, which

document they want to use. Furthermore, it is disadvantageous to cut the mightiness of

XQuery. The user has to be able to write a query as usual, but in a distributed context.

Furthermore, the kind of distribution affects the query performance depending on the

query and its possibility to benefit from index structures. The next sub sections describe

the used query architecture, the implemented prototype, and the results that serve as

base for the discussion.

5.3.1 Architecture

We choose a centralized approach for our basic query architecture similar to our dis-

tribution approach because of the simplification of book keeping of data servers meta

data. The user communicates only with the coordinator server and does not know about

the data servers. This independence allows us to add and remove servers without user

dependencies. One objective of this thesis is to allow an XQuery developer to cope with

large data within an acceptable timeframe and with as few restrictions as possible. A

user is able to write one query, which will be distributed to the responsible data servers

and a second query, which aggregates the results of the distributed query. This archi-

tecture is depicted in Figure 5.8. The Coordinator is responsible for forwarding queries

in parallel to the data servers, which contain the necessary databases. Afterwards, it is

responsible to aggregate the results from the data servers using the second user query.

After aggregation, it sends the results to the requesting user. The three main processes

32

5.3. Querying

in this figure are Coordinator, Map Process and Reduce Process, which are described in

detail now.

Coordinator

...

Data Server

Client

Result

XML Temporary Database

Parallel Query M

Aggregation Query R

Meta Information

M

M

M

M

M

XML Database

R

Figure 5.8: Querying basic architecture.

5.3.1.1 Coordination and Book Keeping

The Coordinator is the central unit in the current distributed query architecture. It ac-

cepts requests from the user and distributes the user queries to the responsible data

servers. Furthermore, it is dedicated to perform aggregation of the results. Before the

distribution of queries begins, the coordination process consults additional meta infor-

mation. Several information is stored on the coordinator machine during distribution of

the collections:

• Hardware specifications of the available data servers, e.g., hard disk sizes, RAM or

CPU.

• Mapping of documents and collections, the distributed collections and the respon-

sible servers are stored in a mapping file.

• Sizes of distributed documents, which are used to hold statistics about data servers

workload.

This information is used to distribute the query only to data servers, which hold the re-

quested collection. In the case where a query contains documents that are not identified

at runtime, the query is executed on all data servers. The map process, representing the

33

5.3. Querying

distributed parallel querying, is completed by a user defined reduce process combining

all intermediate results. Both processes are discussed now in detail.

5.3.1.2 Map Process

The Map Process illustrates the idea of distribution of a query, which is evaluated on all

data servers. That means that this type of query returns intermediate results, which are

aggregated in a second step to receive the complete query results. The XQuery file is

distributed in parallel to all available data servers. Afterwards, the local XML database

executes the query on each data server and sends the result to the Coordinator. The

main advantage is that a large collection is split into several pieces, which are queried

in parallel. Querying in parallel allows to evaluate expressions on collections, which do

not fit on one machine. Furthermore, it decreases the query execution time for queries

that do not benefit from existing index structures.

5.3.1.3 Reduce Process

The Reduce Process is responsible for aggregating the intermediate results from the map

processes and transmitting it to the requesting user. Basically, the user has two possi-

bilities to perform the reduce process: First, to omit the reduce function at all, then the

Coordinator concatenates the results as they come in and forwards it to the user machine

or second, defining a reducer query. If the user decides to perform the reduce process

by using an own query, e.g., to perform sorting of results, the design of the map results

has some restrictions. They must be well-formed XML, because we need a temporary

database on the reducer machine to evaluate the reducer query. Thus, the map process

results are stored in a temporary database and the reducer query is executed within the

context of this database instance. The reducer query results are then transmitted to the

user machine. A map and reduce word count example query looks like:

Complete query:

Give me the top 10 articles with the most ’the’ occurrences

Map query:

Calculate the top 10 articles with the most ’the’ occurrences

from one database server

34

5.3. Querying

Reduce query:

Calculate the top 10 articles with the most ’the’ occurrences

from all map results

This query has to deliver the top 10 articles with the most ’the’ occurrences out of a

distributed articles collection. The user has to define the part, which is evaluated in

parallel as map query and the reduce query aggregating the map intermediate results.

This concrete example is depicted in Figure 5.9.

Coordinator

...

Data Server

Client

Result

XML Temporary Database

Parallel Query M

Aggregation Query R

Meta Information

M

M

M

M

M

Give me the top 10 articles with
the most 'the' occurrences

R

Calculate the top 10 articles with
the most 'the' occurrences from one
database server

R

Calculate the top 10 articles with
the most 'the' occurrences
from all map results

Figure 5.9: Top 10 articles example.

5.3.2 Prototype

The prototype uses BaseX as XML database backend on each data server. Furthermore,

it uses BaseX also for evaluation of the reducer query within a temporary database. It

performs distributed querying using also the Java Client API, directly over a socket pro-

tocol, and the REST approach using HTTP as network protocol. The querying prototype

is again implemented in Java due to its cross-platform support. We used the same dis-

tribution algorithms as introduced in 5.2 as base for distribution of our test collections.

The prototype listens for queries defined by a client. The client sends a map query and

the optional reduce query as XQuery files. The coordinator then distributes the query to

the responsible data servers either by the Java Client or the REST API. The local XML

database executes the map query and sends the results back to the coordinator. If the

client specified a reducer query, a temporary database is created on the Coordinator ma-

chine. The intermediate results are stored in the main memory database and afterwards,

35

5.3. Querying

the reducer query is executed. The complete results are delivered to the client. The class

diagram is depicted in Figure 5.10.

map(mapquery)
mapAndReduce(mapquery, reducequery)

client: Client
Runner

executeMapProcess(mapquery, servers)

<<interface>>
Client

+executeMapProcess(mapquery, servers)
-distributeQueryFile()
-executeQueryFile()
-removeQueryFile()

service: MapperService
RestClient

+distribteQueryFile()
+executeQueryFile()
+removeQueryFile()

MapperServiceBaseXClient

+executeMapProcess(mapquery, servers)
-distributeQueryFile()
-executeQueryFile()
-removeQueryFile()

basex: BaseXClient
SocketClient

+execute(mapquery)
MapClient

+execute(mapresults, reducequery)
ReduceClient

Figure 5.10: Query class architecture.

5.3.3 Results

Again, we use five workstations to simulate our distributed cluster. All of them have

two Intel(R) Core(TM) i7 CPU 870 processors with 2.93 GHz and 8 GB of main mem-

ory. Four of the available workstations are used as data servers and one workstation is

used as coordinator. We use also some XML collections of the NYT news articles collec-

tion with sizes of 43 MB, 110 MB, 1,200MB, 10,000MB and 16,000 MB as base for our

querying. All collections are distributed using the round-robin (RRS), advanced (AS)

and partitioned (P) algorithms to evaluate if partition sizes and uniform distribution

play a role for query execution. We used ten runs for all defined queries. The prototype

implements both BaseX API’s for querying of the distributed data. The user is able to

decide, which network protocol has to be used by the prototype. This is done by specify-

ing a parameter when starting the querying process. The results generated and depicted

in this chapter use the Java Client API. This thesis focuses on query execution time as

characteristic variable for the measurements and thus, all results depict the execution

36

5.3. Querying

time, which is build of query execution time and transmitting of the query to the data

server and the query results to the client.

We defined four classes of test queries:

• Queries using no further reduce step and do not benefit from an index (Q1, Q2,

Q3)

• Queries using no further reduce step, but benefit from index accesses (Q1’, Q2’,

Q3’)

• Queries using a reduce function and benefit from an index access (Q4 and R4)

• Queries using a reduce function and using an index (Q5 and R5), but need a lot of

index accesses.

The following map queries are used for querying all test collections:

Q1:

for $d in collection(’nyt’)

where $d/nitf/head/title/text()=

’NASA Optimistic on Space Station Repair’

return $d

Q1’:

collection(’nyt’)/nitf[descendant::text()=

’NASA Optimistic on Space Station Repair’]

Q2:

for $d in collection(’nyt’)

where $d/nitf/head/pubdata/@date.publication=’20070619T000000’

return $d/nitf/head/title

Q2’:

for $d in collection(’nyt’)[descendant::node()/@date.pupblication=

’20070619T000000’]

return $d/nitf/head/title

Q3:

declare function local:countThe($nitf as node()*) {

let $texts := $nitf/descendant::text()

for $t in $texts

for $token in tokenize($t,"\s+")

where $token="The" or $token="the"

return $token

};

37

5.3. Querying

for $d in collection(’nyt’)

where $d/nitf/head/pubdata/@date.publication=’19870514T000000’

return <nitf><title>{$d/nitf/head/title/text()}</title>

<thes>{count(local:countThe($d/nitf))}</thes></nitf>

Q3’:

declare function local:countThe($nitf as node()*) {

let $texts := $nitf/descendant::text()

for $t in $texts

for $token in tokenize($t,"\s+")

where $token="The" or $token="the"

return $token

};

for $d in collection(’nyt’)[descendant::node()/@date.pupblication=

’19870514T000000’]

return <nitf><title>{$d/nitf/head/title/text()}</title>

<thes>{count(local:countThe($d/nitf))}</thes></nitf>

Query Q1 is responsible to find a special news article containing a defined text node.

Query Q2 returns all titles of news articles, which are published at a given date. Query

Q3 counts special words in an article and returns the sum of the word and the title of

the article. Q4 and Q5 are queries that search for articles, which contain specified words

in the full-text of the article. Q1 and Q2 are queries, which are executed during the map

process. The results are returned directly to the requesting client and a special reducer is

not called. Q3 - Q5 are also executed during the map process, but user defined reducer

queries are performed on the coordinator node. The reducer queries are defined below.

R3 is responsible to aggregate the results from Q3 and to sum up all ’the’ words from

all articles. R4 and R5 are the reducer functions for Q4 and Q5 and their content is the

same. They sort the news article titles using their publication date, which are received

from the map functions.

Q4:

for $d in collection(’nyt’)/nitf[descendant::text()

contains text ’Google’ ftand ’Microsoft’]

return <nitf><title>{$d/head/title/text()}</title>

<date>{$d/head/pubdata/@date.publication}</date></nitf>

Q5:

for $d in collection(’nyt’)/nitf[descendant::text()

contains text ’Google’ ftand ’the’]

return <nitf><title>{$d/head/title/text()}</title>

38

5.3. Querying

<date>{$d/head/pubdata/@date.publication}</date></nitf>

R3:

let $res:=/descendant::nitf

let $sum:=sum($res/thes)

return <complete-result><all-the>{$sum}</all-the>{for $nitf in $res

return <nitf><title>{$nitf/title/text()}</title>

<the-count>{$nitf/thes/text()}</the-count></nitf>}

</complete-result>

R4:

for $n in /descendant::nitf

order by $n/date/@date.publication descending

return <article><title>{$n/descendant::title/text()}</title>

<date>{$n/descendant::node()/@date.publication}</date>

</article>

R5:

for $n in /descendant::nitf

order by $n/date/@date.publication descending

return <article><title>{$n/descendant::title/text()}</title>

<date>{$n/descendant::node()/@date.publication}</date>

</article>

The following table outlines the queries and whether they use existing index structures.

The below results use these queries as map and reduce functions. Q1’ - Q3’ are redefined

queries, which benefit from existing index structures, but return the same results as Q1-

Q3.

Query Applying Index Notes

Q1 No. -
Q2 No. -
Q3 No. -
Q4 Yes. -
Q5 Yes. -
Q1’ Yes. Reformulated Q1 to benefit from a text index.
Q2’ Yes. Reformulated Q2 to benefit from an attribute index.
Q3’ Yes. Reformulated Q3 to benefit from an attribute index.

Table 5.2: Queries using index structures.

Figure 5.11 depicts the map and reduce query results on different collection sizes that

were distributed using the defined algorithms RRS, AS and P. RRS distributes all docu-

ments uniformly to all machines. AS considers the RAM size minus the operating system

requirements of the data node and P distributes the collection using also RAM size of

the data node and partitions the collection parts uniformly. For collection sizes of 43

39

5.3. Querying

MB, 110 MB and 1,200 MB, AS and P work the same way because the collection is not

partitioned and distributed only to one machine.

One interesting thing is that the RRS distribution algorithm is the best base for query

execution for all tested collection sizes. AS and P perform almost the same for the col-

lection sizes smaller than the RAM partitioning parameter (Figure 5.11 (a)-(c)).

P outperforms AS on the 10,000 MB collection due to the bad partitioning strategy of

AS, which distributes about 7,000 MB to one data server and the other 3,000 MB to

another. P partitions equally and distributes 5,000 MB each.

Figure 5.11 (e) shows similar performance results for queries on collections distributed

using AS and P algorithms because the complete collection is stored on two data nodes,

when considering RAM as partitioning parameter. Nevertheless, RRS performs best.

The second important issue is that the shortest distributed query evaluation costs about

300 ms, which is due to the network communication between Coordinator and the data

nodes and the query evaluation time. We analyse this factor below in detail.

When we compare distributed query evaluation to local BaseX evaluation, we realize

that performance is dependent on the defined XQuery expression. Figure 5.12 depicts

the comparison of the test queries using the map and reduce processes. We consider only

collection sizes of 10,000 MB and 16,000 MB for this evaluation because querying of dis-

tributed smaller collections of only few MBs is not competitive to local query execution.

Q1 to Q3 do not benefit from an index, which is the reason for the bad performance.

Q4 uses an index and performs better than the distributed alternative on both collection

sizes. When the query complexity is increased or more index accesses are needed within

one query, distribution becomes more attractive and outperforms local query execution.

Furthermore, if queries are not able to benefit from an existing index or range queries

are a more common use case, distribution is a good option.

40

5.3. Querying

(a) 43 MB collection.

(b) 110 MB collection.

(c) 1,200 MB collection.

(d) 10,000 MB collection.

(e) 16,000 MB collection.

Figure 5.11: Queries Q1 - Q5 on different distributed cluster sizes.

41

5.3. Querying

(a) 10,000 MB collection.

(b) 16,000 MB collection.

Figure 5.12: Queries Q1 - Q5 on different local and distributed cluster sizes.

Figure 5.13 depicts the results of the reformulated Q1 to Q3 queries that benefit from

index structures. As expected, using indexes increases query performance. In this case

local query execution outperforms distributed query execution, which also uses the re-

formulated queries in contrast to the query comparison that do not use index structures.

Furthermore, this figure depicts the minimum measured distributed query time of about

300 ms for all three queries that benefit from indexes.

As in Figure 5.13 depicted the 300 ms boundary is very slow. We therefore investigated

the least possible distributed query execution time because the network is fast and a

ping of the data server lasts only 1 - 2 ms and thus the network is not the expected

boundary. In the previous approach, we tested each distributed query execution in a

new Java process. Furthermore, we used the Hadoop MapReduce idea to first distribute

the query to the data nodes and to store them in a database. Afterwards, we executed

the query using a second network call. Additionally, we printed the query results to

the console, which is also not cheap. The new evaluation results, depicted in Figure

5.14, present the best performance results achieved with the queries Q1’ to Q3’ using

only the index supported variants. The distributed executed queries outperform the

local executed queries. We reused the JVM process, sent the query directly and wrote

42

5.3. Querying

Figure 5.13: Q1-Q3 applying text and attribute index.

the results in a file. The least achieved empty query execution time in our distributed

evironment was 6.5 ms.

Figure 5.14: Q1’-Q3’ applying text and attribute index using the tuned execution
approach.

43

5.3. Querying

5.3.4 Scalability with the Top 10 Example

We developed a query, the Top 10 Example, which retrieves the top 10 articles with the

most ’the’ word occurrences within the NYT XML collection3. We used four NYT data

sizes to perform local query execution in comparison to the distributed approach using

one to four data nodes. We again performed ten runs and used the average for our

comparisons. Figure 5.15 depicts our results. With increasing of the data and adding

new data nodes as new resources, the execution time remains constant.

(a) Local Top 10 execution on different sizes.

(b) Distributed Top 10 execution on different sizes
and several servers.

Figure 5.15: Scalability of the distributed XQuery approach.

5.3.5 Challenges

The RRS distribution served as best base for our query evaluation. All available data

nodes are involved into data distribution and therefore, also into query execution. There

are several things that must be considered. First, all nodes are involved for all query re-

quests, which is a major drawback, when many clients send many queries to different

collections. This is due to the fact that the BaseX instance must handle all requests and

the buffer manager often has to reorganize all available buffers. If we would consider

updates as well as read-only queries, BaseX will lock each database server for a given

update query, which slows down the complete query performance for other clients even

3You can find the defined queries and the example workflow in Chapter 6

44

5.3. Querying

if they tried not to access the same collection. Another problem arises when one data

server fails, e.g., due to a hardware failure. All available databases lose data. Replica-

tion would be a solution to avoid such a situation. It would be interesting to analyse the

distribution and querying of one collection size with different cluster sizes to find the

threshold for managing parallel data nodes to measure the maximum parallel overhead

join, see [Amd67].

Furthermore, we considered only three distribution strategies. We did not mind that hot
collections existed, which are queried much more often. These collections could be re-

distributed or rebalanced to offer a better query performance. Another question is what

happens with existing collections, if we would add an additional data node. It should

also be considered whether we should have to redistribute all existing collections or not

when using RRS.

In addition, the distribution and querying is dependent of the user queries. Simple

queries, which can be optimized, e.g., by using an index structure, need another distri-

bution strategy than queries that are difficult to optimize.

The introduced approach executes queries on the data nodes. If a query contains ex-

pressions that need data from other databases, it only accesses the local database server

instance. As a consequence, when using RRS the sub queries are not routed as new map

processes, which is an essential weakness. Consequently, there is a lot of place for im-

provement in this area. One possible solution of this problem is introduced in the next

chapter.

We considered only an XML collection size of 16,000 MB. There are also a lot of collec-

tion sizes, which are beyond of the test data set. It would be interesting to investigate

querying on several TB or even PB.

Currently, the reducer functions are executed in the context of a main memory BaseX

database on the coordinator node, which is a restriction due to the available main mem-

ory size.

Further challenges and ideas are discussed in the chapter Future Work.

45

5.3. Querying

5.3.6 Conclusion

We investigated the three distribution algorithms RRS, AS, and P as base for our query-

ing. Again RRS was the best starting position for our test query set. We developed four

test query classes to leverage query performance on a distributed 16 GB XML collection.

During this evaluation, we minimized almost all ideas from the initial Hadoop MapRe-

duce approach to the core idea of the two functions map and reduce, which yielded great

performance results. The most impressive results are generated for queries, which are

not able to benefit from an index structure. Additionally, the results are dependent on

the server properties like the available RAM size and whether index structures are able

to remain in main memory. The performance results showed that many queries benefit

from distribution of large collections and the overhead for small collections is not as big

as expected. At the beginning of this chapter, we analyzed some ideas of distribution

strategies that serve as the base for the query evaluations. The result is that the distri-

bution strategy has a considerable influence on the query performance. Moreover, we

considered only querying of collections of documents and not a fragmented and large

XML tree, which is quite complex due to the right choice of fragmentation rules.

46

6 EXPath Packaging and Example Workflow

using BaseX

The goal of this thesis was to investigate querying of distributed data using XQuery ex-

pressions and the best approach is to execute the distribution of queries directly out

of XQuery. Currently, XQuery itself does not support distributed parallel querying. Al-

though, several approaches already exist to perform parallel querying out of XQuery,

most of these ideas extend the XQuery language specification to allow a user to per-

form distributed calls [FJM+07a, FJM+07b]. These approaches have the drawback that

each XQuery processor must implement such an arbitrary XQuery extension. Aside from

these methods, another idea is to integrate such a query distribution function directly

into the XQuery processor, but the problem here is that each other XQuery processor has

to implement an own distribution function. There is yet another attempt to cope with

this problem EXPath [Con12a]. Here EXPath provides specifications to enable features,

which are not part of XPath and XQuery and are used within several query processors. A

useful specification is the EXPath Packaging System. It allows packaging any set of XML

core technology files in an archive, which is integrated into a query processor [Con12b].

BaseX supports the EXPath packaging features and therefore, we decided to use the pack-

aging idea for our query distribution. The advantage of this idea is that our approach

does not need to extend the XQuery specification and all EXPath supporters benefit from

it. In the next sub section, we give an introduction into EXPath.

6.1 EXPath Packaging System within BaseX

BaseX offers the possibility to add EXPath packages, which extend the BaseX functional-

ity. Currently, BaseX supports sending HTTP requests to other resources via the EXPath

HTTP specification, as described in [Bas12a]. The problem with this approach is that it

is not possible to execute HTTP requests in parallel. It is only possible to execute HTTP

requests in a loop, iterating through the XQuery item sequence. Thus, a new EXPath

47

6.2. Distributed Querying

package is created to support parallel distributed query execution. BaseX accepts pack-

ages, which are .xar archives that contain one or more extension libraries. Such libraries

can be either XQuery libraries or Java libraries. Since we must execute parallel query

execution through external Java code, we add a Java jar file to the xar archive. The

structure of the xar archive is defined by the EXPath specification, [Con12b]. In general

it consists of a descriptor XML file, which contains meta information about the package

and its dependencies, e.g., the jar file. Furthermore, a wrapper XQuery file is contained

using the BaseX Java Bindings to call the implemented Java classes within the jar pack-

age. This package is installed or deleted through the BaseX’ commands REPO INSTALL

or REPO DELETE. Afterwards, the user is able to use the installed module by defining its

module namespace in the query scripts. A detailed description is available on the BaseX

packaging documentation web site [Bas12b].

6.2 Distributed Querying

Due to the better performance results of the Java Client API compared to the BaseX REST

API introduced in Chapter 5.2, we decided to distribute the queries using BaseX’ Java

Client API. The user is able to define the query, which has to be distributed and enter

it as function parameter to the packaged and installed module. This module distributes

the defined query in parallel to all defined BaseX servers. The queries are evaluated

on each BaseX server and results are sent back to the initiator BaseX application. This

approach will now be described in detail using some example workflows. All examples

are based on the NYT 16 GB data set, which is distributed to four BaseX servers using

the round-robin approach. The workflow of our example is depcited in Figure 6.1.

The XQuery file contains a query, which is defined as String value. The query is delegated

to the wrapper XQuery file, which is responsible to instantiate the corresponding Java

class. The Java class contains a method to distribute the query in parallel, which is

invoked by the wrapper XQuery file. After parallel distribution and evaluation of the

query (map process), the intermediate results are transformed to XQuery data types and

returned to the wrapper file. The wrapper file then delivers the complete results to the

user defined query. The user query is able to further use the distributed query results for

other queries, i.e., aggregation of the results (reduce process).

48

6.2. Distributed Querying

...

Data Server

Result

Parallel Query M

Aggregation Query R

M

M

M

M

User XQuery File
using

distributed
XQuery

Wrapper
XQuery

file
R

M Java
Query

Distribution
class

M

BaseX Database

Result

BaseX XQuery Execution Java Code using
BaseX Java Client API

Figure 6.1: EXPath workflow example using BaseX.

6.2.1 Map execution

We defined two queries for our examples that represent user queries: DQ1 simply de-

livers all documents, which contain the keywords Microsoft and Google in the full-text

of the news articles (as in Q4 in the previous chapter), and DQ2, which returns a Top
10 list of documents with the most ’the’ occurrences. DQ1 peforms only the map pro-

cess, because the distributed query results are printed directly as complete results and

no further reduce step is performed. The DQ1 query is defined as follows:

(: Import of necessary module namespace :)

import module namespace d="http://basex.org/modules/distribute";

(: List of BaseX servers for the distributed evaluation :)

let $urls:=(’server1.example.com:20000’,

’server2.example.com:20000’,

’server3.example.com:20000’,

’server4.example.com:20000’)

(: Definition of distributed query :)

let $distributedquery:="<dq-result>{

for $d in collection(’nyt’)/nitf[descendant::text()

contains text ’Google’ ftand ’Microsoft’]

return $d

}

</dq-result>"

49

6.2. Distributed Querying

(: Execution and visualization of distributed query results :)

let $dqresult:=d:query($mapquery,$urls)

return $dqresult

The important items in the DQ1 query are declaring the namespace of the distribution

module, the definition of BaseX servers, which have to be queried and the distributed

query definition. The d:query($mapquery,$urls) call then executes the defined XQuery

function in the wrapper XQuery file:

(: The module namespace used in the other queries. :)

module namespace d="http://basex.org/modules/distribute";

(: The java namespace defines the Java class

which will be responsible for its methods. :)

declare namespace java="java:org.distribution.Query";

(: The instance of the Java class. :)

declare variable $d:instance := java:new();

(: The function which executes the Java method Query#query(...)

and returns the results as nodes. :)

declare function d:query($q as xs:string, $urls as xs:string*)

as node()* {

for $i in java:query($d:instance, $q, $urls)

return parse-xml($i)

};

The wrapper XQuery file delegates the query task to the implemented Java code in the

class org.distribution.Query by executing java:query($d:instance, $q, $urls). BaseX ini-

tializes the defined Java class and translates the XQuery data types to the corresponding

Java types. The simplified Java method is depicted as pseudo code in Algorithm 3.

This class is called when a distributed query request is initiated by the wrapper file. The

query method receives the user defined query and a list of URLs as input parameter.

Within the method BaseX types represent XQuery types and are used for the XQuery

expressions to omit too many conversions between XQuery and standard Java types.

Within this method there are as many threads as URLs exist created. Each thread ex-

50

6.2. Distributed Querying

ecutes the query by using the BaseX Java Client API. Afterwards, when all threads are

done, the results are collected and returned as Item array. This array is then translated

into an XQuery sequence.

Algorithm 3 query(query: Str, urls: Value) : Item[]

1 resultItems:=new List
2 for u in urls do
3 item:=distribute query using BaseXClient API in a separate Java thread
4 resultItems.add(item)
5 end for
6 return resultItems

6.2.2 Reduce

A simple reduce process can be easily done within the initiator BaseX application as DQ2

illustrates:

(: Import of necessary module namespace :)

import module namespace d="http://basex.org/modules/distribute";

(: Counts the available ’the’ words :)

declare function local:countThe($nitf as node()) {

let $texts := $nitf/descendant::text()

for $t in $texts

for $token in tokenize($t,’\s+’)

where $token=’The’ or $token=’the’

return ’1’};

(: list of BaseX servers for the distributed evaluation :)

let $urls:=(...)

(: definition of distributed query :)

let $query:="

declare function local:countThe($nitf as node()) {

let $texts := $nitf/descendant::text()

for $t in $texts

for $token in tokenize($t,’\s+’)

where $token=’The’ or $token=’the’

return ’1’};

51

6.2. Distributed Querying

declare function local:map(){

for $d in collection(’nyt’)

let $ct:=count(local:countThe($d/nitf))

order by $ct descending

return $d

};

<dq-result>{for $d at $p in local:map()

where $p<11

return $d}</dq-result>

"

(: execution of distributed query results and afterwards

computing Top-10 list using local queries :)

let $mapresult:=d:query($query,$urls)

let $reduceresult:=

<reduce-result>{

for $topk at $p in {

for $sr in $mapresult let $ct:=count(local:countThe($sr))

order by $ct descending

return $sr

}

where $p<11

return $topk

}</reduce-result>

return <dq-results>{$reduceresult}</dq-results>

Thus, the user is able to use the distributed results as new input for the local queries to

perform further aggregation. In the above example, the distributed query results return

a top 10 list of news articles for each data node. Afterwards, the local query performs a

new top 10 list computation using only these distributed query results (reduce process).

The presented configuration needs only one installation of the module on the BaseX ini-

tiator application, which is responsible for the query distribution. All other data servers

remain standard BaseX servers and do not need any further configurations.

6.2.3 Reduce Extension

The local reduce approach performs well, but the requirements for the BaseX initiator

application are not negligible. If the intermediate results from all data servers are quite

large, the local reducer has to cope with large sequences of XML nodes. It is obviously

52

6.2. Distributed Querying

not the best approach, for example for a mobile device, since it has many restrictions like

processor and main memory sizes. The introduced BaseX integration is able to delegate

the map and reduce process to another, e.g., a more powerful, BaseX server or even to

an existing data server. To enable this feature, only a modified module version has to be

installed to all BaseX servers. The modification only concerns the wrapper XQuery file:

(: The module namespace used in the other queries. :)

module namespace d="http://basex.org/modules/distribute";

(: The java namespace. :)

declare namespace java="java:org.distribution.Query";

(: The instance of the Java class. :)

declare variable $d:instance := java:new();

(: The function which executes the Java method Query#query(...)

and returns the results as nodes. :)

declare function d:query($q as xs:string, $urls as xs:string*)

as node()* { for $i in java:query($d:instance, $q, $urls)

return parse-xml($i) };

(: HTTP request body :)

declare function d:querybody($query as xs:string){

let $rest-query:=

<rest:query xmlns:rest="http://www.basex.org/rest">

<rest:text>{$query}</rest:text>

</rest:query>

let $body := <http:body media-type ="application/xml">

{$rest-query}</http:body>

return <http:request method=’post’>{$body}</http:request>

};

(: HTTP request execution :)

declare function d:querymr

($q as xs:string, $urls as xs:string*, $rs as xs:string?)

as node()* {

let $b:=d:querybody($q)

return if($rs=’’) then http:send-request($b, $urls[1]) else

http:send-request($b, $rs)

};

The workflow is illustrated in Figure 6.2, where the BaseX client delegates the dis-

53

6.2. Distributed Querying

...

Data Server

Result

Parallel Query M

Aggregation Query R

User XQuery File
using

distributed
XQuery

Wrapper
XQuery

file

Java
Query

Distribution
class

BaseX Database

Result

BaseX XQuery Execution Java Code using
BaseX Java Client API

Reduce
Server

M

M

M

M

M

M

R

R

M R

Result

BaseX Reduce Server

Wrapper
XQuery

fileResult

M

Delegated Map and Reduce Query MR

Figure 6.2: Workflow of the introduced reduce extension.

tributed query execution to a dedicated reduce server. The main idea is to use the HTTP

module to delegate the complete distributed query execution to another BaseX server.

d:querymr(..) function sends the map and reduce process (map and reduce query) to

the reduce server. The reduce server then executes the distributed queries using again

the same module on all defined data servers and computes the aggregation results after-

wards. Following, it returns the final results via the HTTP module to the BaseX initiator

application. The map and reduce query looks like:

54

6.2. Distributed Querying

import module namespace d="http://basex.org/modules/distribute";

(: list of BaseX HTTP servers for the distributed evaluation :)

let $urls:=(...)

(: map and reduce query :)

let $mapreducequery:="

import module namespace d=’http://basex.org/modules/distribute’;

(: Top 10 reducer counter :)

declare function local:countThe($nitf as node()) {...};

(: list of BaseX servers for the distributed evaluation :)

let $urls:=(...)

(: Mapping tasks :)

let $mapquery:="

(: Top 10 mapper counter :)

declare function local:countThe($nitf as node()) {..};

declare function local:map(){

for $d in collection(’nyt’)

let $ct:=count(local:countThe($d/nitf))

order by $ct descending

return $d

};

<map-result>{for $d at $p in local:map()

where $p<11 return $d}</map-result>

"

(: Remote reduce process :)

let $mapresult:=d:query($mapquery,$urls)/descendant::nitf

let $reduceresult:=for $topk at $p in

for $sr in $mapresult let $ct:=count(local:countThe($sr))

order by $ct descending

return $sr

where $p<11

return $topk

return

<dq-results>

{$reduceresult}

</dq-results>

"

(: Execution of map and reduce process on server 1 using HTTP :)

let $httpcall:=d:querymr(

$mapreducequery,$urls,’http://server5.example.com:20002/rest’)

return $httpcall/dq-results/nitf

55

6.3. Challenges

6.3 Challenges

The two main challenges with this BaseX integration approach are that the underly-

ing XML database has to implement the EXPath Packaging System specification and the

XQuery developer must decide whether a query has to be evaluated locally or whether

the distributed query approach has to be used. Thus, the developer controls the ex-

ecution type and the execution is not performed transparent within the BaseX system.

Furthermore, the developer has to specify the data server locations before the distributed

query execution. The distributed map and reduce queries are defined as a String type,

which makes it difficult to debug the XQuery expressions.

Another great challenge is to join items with data of more than one collection.

(a) Join occurs on reduce
node.

(b) Join occurs on each data node.

Figure 6.3: Join problem of several collections.

Figure 6.3 depicts the two possible solutions to join documents of two collections, which

are distributed to a four node cluster using the RRS algorithm. An example here is to

join articles of the NYT collection with an RSS collection to cluster news items concern-

ing the same mentioned person. In this figure (a) proposes to perform the join on the

reducer node (red node in the sub figure). The obvious disadvantage is that both collec-

tions must be collected and transferred to the reducer node to perform a join, which is

not possible if both collection sizes are larger than the memory of the reducer node. The

second sub figure (b) proposes another strategy to perform a join. First, the distributed

query is distributed to all data nodes. Afterwards, the data nodes broadcast a query to

the other data nodes to search for join partners. After having received the join partners,

they perform the join on each data node and return the results to the initiator applica-

56

6.4. Conclusion

tion. This approach also has the disadvantage that the network has to cope with many

messages, a problem that should be investigated in more detail.

6.4 Conclusion

This chapter introduced a light-weight alternative to the Hadoop MapReduce frame-

work. It does not need a distributed file system, and the user has the opportunity to

call all data contained on data servers and must not think in records. The user remains

in the XQuery world and only has know our introduced EXPath module to benefit from

parallel query evaluation. It is possible to aggregate the results of the distributed queries

with a local reduce step. Futhermore, the user is able to delegate the whole map and

reduce queries to another server, either a dedicated reducer machine or a simple data

node, which allows the user application to be executed on a constrained device. Thus,

each data node is also a coordinator node.

57

7 Future Work

In the wide research field of distribution and querying data important topics deserve

special attention and need to be looked at in detail to further improve general processes.

Aside from the replication of data ensuring availability, security issues, distributed trans-

action processing, and failure tolerance, improvement is of utmost importance in the

areas of Distribution, Querying, and Updating. Following, is our detailed analysis of

these processes.

7.1 Distribution

This master thesis introduced three possible distribution algorithms, RRS, AS, and P. A

suitable distribution is needed to be able to store large data sets that cannot be stored

on one machine. Furthermore, the choice of a distribution algorithm affects the query

execution time. In our example the RRS algorithm was the best base for distributed

querying. However, this distribution algorithm has several disadvantages: First, when

one server fails, all collections will be affected. Additionally, all servers have to be called

to access a collection, which means that all servers must be able to cope with many

client requests and have to organize the buffer satisfactorily. To add a new data server

in order to offer more storage capacities represents yet another challenge. It is therefore

important to investigate whether the existing data has to be reorganized or not.

Furthermore, this thesis focused on distribution on a document level, which is an ap-

proach that is applicable to almost all other XML database implementations and not

only with BaseX. On the other hand, it could be more suitable to distribute implemen-

tation specific to achieve an improved distribution performance. In the case of BaseX it

should be investigated whether a distribution on the storage layer (table) could improve

distribution performance.

When considering the architecture, we used a centralized distribution architecture to

allocate data servers. This coordinating server is a single-point-of-failure and therefore,

it should be analyzed whether a decentralized approach could be used instead of this

59

7.2. Querying

proposed, while still maintain the distribution performance.

Another challenge is not to focus on collections of XML, but to research how one large

XML instance could be fragmented and distributed to several data servers. This topic is

not only a challenge for distribution, but also a challenge for querying distributed trees.

7.2 Querying

In the area of querying, we focused so far only on querying distributed data and ne-

glected hot collections, which are queried much more often than other distributed col-

lections. One difficult task is to organize the buffer to allow a high client throughput. A

solution would be to introduce replication of the distributed data to relax the hot collec-

tion requests.

Another interesting problem is to introduce an index to detect, which documents of a

collection are located on which data server to omit calling all data servers that hold the

named collection. With the introduced BaseX integration approach it is possible to pe-

form distributed queries on all data nodes, which means each data node is able to act as

initiator of a distributed query. An index must then be able to detect on all data servers

on which other servers the requested documents are located. One possible solution is a

hashing function considering the distribution of a document URI on a data node loca-

tion, such as in peer-to-peer networks.

Moreover, the current approach forces an XQuery developer to define if a collection has

to be called local or in a distributed way using the module distribution function. It

would be better if the underlying system detects whether a collection is available on

the local machine or if the collection is distributed and then makes the decision without

constraining the XQuery developer. Furthermore, a distributed query optimizer could

improve distributed query execution.

7.3 Updating

Although, update operations on distributed data are an important issue, this thesis did

not allow to further analyse this topic. Updates affect the distributed data fragments

enormous. For example, it would be possible that one distributed fragment could be

nearly deleted, and the uniform distribution is no longer guaranteed. The same problem

arises if additional documents have to be added to a given data server. A database system

should consider such issues and, i.e., redistribute the data with a cost-saving algorithm.

60

7.4. More

7.4 More

Currently, there are also compression approaches to improve the performance of the in-

troduced ideas. Here further investigation is needed to find out whether compression

algorithms would increase the distribution proccess, e.g., to apply a compress algorithm

before the fragment will be sent to a data server. Compression could also be applied

within the querying process, where large intermediate results could be compressed be-

fore sending them to reducers.

Moreover, if a distributed query contains requests to several distributed collections, it

should be analyzed whether a suitable parallelization algorithm could improve perfor-

mance. Furthermore, it should be analyzed how network hopping could be avoided and

network transmission minimized.

61

8 Conclusion

In this master thesis, we investigated distribution and querying of XML collections in

detail. We evaluated the application of Hadoops MapReduce framework for distribution

and querying of XML documents. As stated in Chapter 4, this approach works only for

analyzing large data, where short reponse times are not as important as, e.g., failure tol-

erance. We introduced in Chapter 5 an alternative approach implemented in Java, which

is able to use three different distribution strategies. The RRS distribution algorithm per-

formed best for larger collection sizes and was the best base for querying afterwards.

In the case of BaseX, a native XML storage and XQuery processor, we evaluated the

available API performance for distribution and querying and proposed to use the Java

Client API for both requirements. Querying is done directly out of an XQuery expression

and no further Java code has to be written to enable parallel query execution. Further-

more, as shown by our results, distributed query execution performs well.

We introduced a querying architecture that can be easily adapted of all EXPath speci-

fication supporters. The advantage is that XML database providers do not extend the

XQuery language or implement own distribution functions within their architecture.

To the best of our knowledge our implementation, which is built on the top of BaseX, is

the only open source XML database that supports parallel querying of distributed XML

collections out of XQuery.

63

Bibliography

Bibliography

[ABC+03] Serge Abiteboul, Angela Bonifati, Grégory Cobéna, Ioana Manolescu, and

Tova Milo. Dynamic xml documents with distribution and replication. In

Proceedings of the 2003 ACM SIGMOD international conference on Manage-
ment of data, SIGMOD ’03, pages 527–538, New York, NY, USA, 2003.

ACM.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, AFIPS ’67 (Spring), pages 483–485, New

York, NY, USA, 1967. ACM.

[Bas12a] BaseX. HTTP Module. http://docs.basex.org/wiki/HTTP Module, January

2012.

[Bas12b] BaseX. Packaging. http://docs.basex.org/wiki/Packaging, January 2012.

[BC07] Angela Bonifati and Alfredo Cuzzocrea. Efficient fragmentation of large

xml documents. In Proceedings of the 18th international conference on
Database and Expert Systems Applications, pages 539–550, Berlin, Heidel-

berg, 2007. Springer-Verlag.

[BCF+07] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,

Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Lan-

guage. W3C Recommendation. http://www.w3.org/TR/xquery, January

2007.

[BCFK06] Peter Buneman, Gao Cong, Wenfei Fan, and Anastasios Kementsietsidis.

Using partial evaluation in distributed query evaluation. In Proceedings of
the 32nd international conference on Very large data bases, VLDB ’06, pages

211–222. VLDB Endowment, 2006.

[BF05] Sujoe Bose and Leonidas Fegaras. Xfrag: A query processing framework for

fragmented xml data. WebDB’05, 2005.

65

Bibliography

[BG03] Jan-Marco Bremer and Michael Gertz. On distributing xml repositories.

WebDB’03, 2003.

[BPSM+08] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and Francois

Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Rec-

ommendation. http://www.w3.org/TR/REC-xml, November 2008.

[CNP82] S. Ceri, M. Negri, and G. Pelagatti. Horizontal data partitioning in database

design. In Proceedings of the 1982 ACM SIGMOD international conference
on Management of data, SIGMOD ’82, pages 128–136, New York, NY, USA,

1982. ACM.

[Con12a] H2O Consulting. EXPath. http://expath.org/, January 2012.

[Con12b] H2O Consulting. EXPath Packaging System.

http://expath.org/modules/pkg/, January 2012.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-

ing on Large Clusters . In OSDI, 2004.

[Edl11] Prof. Dr. Stefan Edlich. NoSQL - Not only SQL. http://nosql-database.org/,

October 2011.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.

[FJM+07a] Mary Fernández, Trevor Jim, Kristi Morton, Nicola Onose, and Jérôme

Siméon. Dxq: a distributed xquery scripting language. In Proceedings of
the 4th international workshop on XQuery implementation, experience and
perspectives, XIME-P ’07, pages 3:1–3:6, New York, NY, USA, 2007. ACM.

[FJM+07b] Mary F. Fernàndez, Trevor Jim, Kristi Morton, Nicola Onose, and Jérôme

Siméon. Highly distributed xquery with dxq. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, SIGMOD

’07, pages 1159–1161, New York, NY, USA, 2007. ACM.

[Fou11] Apache Software Foundation. Hadoop. http://hadoop.apache.org/, August

2011.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file

system. In SOSP, 2003.

66

Bibliography

[GHM+07] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,

Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP Version

1.2 Part 1: Messaging Framework (Second Edition). W3C Recommenda-

tion. http://www.w3.org/TR/soap12, April 2007.

[GKW08] Sebastian Graf, Marc Kramis, and Marcel Waldvogel. Distributing xml with

focus on parallel evaluation. DBISP2P’08, 2008.

[GLG10] Sebastian Graf, Lukas Lewandowski, and Christian Grün. JAX-RX - Unified

REST Access to XML Resources. Technical Report, University of Konstanz,

Konstanz, BW, 2010.

[Gra08] Sebastian Graf. Verteilungsansätze von großen Datenmengen. Master’s

thesis, University of Konstanz, Germany, October 2008.

[Grü10] Christian Grün. Storing and Querying Large XML Instances. PhD thesis,

University of Konstanz, Germany, 2010.

[KATK10] Ioannis Konstantinou, Evangelos Angelou, Dimitrios Tsoumakos, and Nec-

tarios Koziris. Distributed indexing of web scale datasets for the cloud. In

Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud,

MDAC ’10, pages 1:1–1:6, New York, NY, USA, 2010. ACM.

[KCS11a] Shahan Khatchadourian, Mariano Consens, and Jérôme Siméon. Chuql:

processing xml with xquery using hadoop. In Proceedings of the 2011 Con-
ference of the Center for Advanced Studies on Collaborative Research, CAS-

CON ’11, pages 74–83, Riverton, NJ, USA, 2011. IBM Corp.

[KCS11b] Shahan Khatchadourian, Mariano Consens, and Jérôme Siméon. Having a

chuql at xml on the cloud. AMW’10, 2011.

[Kos00] Donald Kossmann. The state of the art in distributed query processing.

ACM Comput. Surv., 32:422–469, December 2000.

[MMWK10] Ashok Malhotra, Jim Melton, Norman Walsh, and Michael Kay. XQuery 1.0

and XPath 2.0 Functions and Operators (Second Edition). W3C Recommen-

dation. http://www.w3.org/TR/xpath-functions, December 2010.

[NCWD84] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical

partitioning algorithms for database design. ACM Trans. Database Syst.,
9:680–710, December 1984.

67

Bibliography

[PM02] Vassilis Papadimos and David Maier. Distributed queries without dis-

tributed state. WebDB’02, 2002.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana

Manolescu, and Ralph Busse. XMark: A Benchmark for XML Data Manage-

ment. In VLDB, pages 974–985, 2002.

[VCL10] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity

joins using mapreduce. In Proceedings of the 2010 international conference
on Management of data, SIGMOD ’10, pages 495–506, New York, NY, USA,

2010. ACM.

[Wei10] Andreas Weiler. Client-/Server-Architektur in XML Datenbanken. Master’s

thesis, University of Konstanz, Germany, September 2010.

[ZZYH10] Qi Zhang, Yue Zhang, Haomin Yu, and Xuanjing Huang. Efficient partial-

duplicate detection based on sequence matching. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in infor-
mation retrieval, SIGIR ’10, pages 675–682, New York, NY, USA, 2010.

ACM.

68

List of Figures

List of Figures

2.1 Fragmentation of documents based on tree structure and relational table. . 4

2.2 XML Collection. 5

2.3 MapReduce architecture. 7

4.1 Phase 1: Distribution of XML input files via Hadoop’s HDFS. Phase 2:

Importing of distributed XML files to XML databases. 13

4.2 a) distribution of XML collections through a master node. b) querying the

distributed XML sub collections. 14

4.3 MapReduce evaluation on different data node cluster sizes. 15

4.4 Comparison of importing XML collections to BaseX in a distributed and

non-distributed environment. 16

4.5 Query execution on 1 GB and 25 GB XMark collection in a distributed and

non-distributed environment. 17

5.1 Distribution architecture. 21

5.2 Distribution implementation. 23

5.3 Treeview of the NYT example document. 27

5.4 Distribution using the round-robin approaches. 28

5.5 Distribution using the advanced and partitioned approaches. 29

5.6 Comparison of socket algorithms. 30

5.7 Comparison of round-robin algorithms. 31

5.8 Querying basic architecture. 33

5.9 Top 10 articles example. 35

5.10 Query class architecture. 36

5.11 Queries Q1 - Q5 on different distributed cluster sizes. 41

5.12 Queries Q1 - Q5 on different local and distributed cluster sizes. 42

5.13 Q1-Q3 applying text and attribute index. 43

5.14 Q1’-Q3’ applying text and attribute index using the tuned execution ap-

proach. 43

69

List of Figures

5.15 Scalability of the distributed XQuery approach. 44

6.1 EXPath workflow example using BaseX. 49

6.2 Workflow of the introduced reduce extension. 54

6.3 Join problem of several collections. 56

70

List of Tables

List of Tables

3.1 Differences between ChuQL, DXQ and our approach. 10

5.1 Intersections and differences of our map and reduce approach in compar-

ison to the Hadoop MapReduce framework. 20

5.2 Queries using index structures. 39

71

	Text1: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-188823

