
Advanced Storage Structures for Native XML

Databases

Dimitar Popov

Master Thesis in fulfillment of the requirements for the degree of Master of
Science (M.Sc.)

Submitted to the Department of Computer and Information Science at the
University of Konstanz

Reviewers:
Prof. Dr. Marc H. Scholl

Prof. Dr. Marcel Waldvogel

Abstract

The XQuery Update Facility has turned native XML databases
from static document-oriented database systems to general purpose
transactional systems. Consequently, data structures allowing both
fast read and write operations have become a necessity. This the-
sis presents several such structures and focuses on the challenges that
emerge by their application in a native XML database. A new algo-
rithm is described, which serves to determine the position of an XML
node using its unique identifier. Its formal description is further used
as the basis of a proof of the algorithm’s correctness. Another central
topic is the efficient storage and modification of records with variable
length. Their handling in the context of XML databases is discussed in
detail as well as optimizations, which improve the performance. Fur-
thermore, mechanisms for updating different kinds of index structures
are proposed along with maintaining index statistics.

Zusammenfassung

Native XML Datenbanksysteme sind, dank XQuery Update Facili-
ty, nicht mehr statische dokumentorientierte Systeme, sondern univer-
sale Transaktionssysteme. Diese Tatsache erfordert den Einsatz von
Speicherstrukturen, die außer schnelle Leseoperationen auch schnelle
Schreib-Operationen ermöglichen. Diese Arbeit stellt solche Struktu-
ren vor. Ein neuer Mechanismus für die Bestimmung der Position eines
XML Knotens mittels seines Identifikators wird dargestellt, gefolgt von
einer formalen Beschreibung, die als Basis für einen Beweis der Kor-
rektheit des Algorithmus dient. Ein weiteres Thema ist die effiziente
Speicherung und Modifizierung von Datenbankeinträgen mit variabler
Länge. Die Behandlung von solchen Einträgen wird im Kontext von
XML-Datenbanken eingehend discutiert sowie verschiedene Optimie-
rungen. Schließlich werden Mechanismen zur Aktualisierung von ver-
schiedenen Index-Typen vorgeschlagen und auch Index-Statistiken, die
in nativen XML-Datenbanken vorkommen.

i

Acknowledgments

First, I would like to thank Prof. Dr. Marc H. Scholl and Prof. Dr. Marcel
Waldvogel for being referees of this thesis.

I am also sincerely grateful to Dr. Christian Grün for being my advisor
and for the valuable guidance and discussions, without which this thesis
would not be possible.

I am obliged to my colleagues and friends from the university and from
the BaseX team, in particular to Leo Wörteler, Michael Seiferle, and Rositsa
Shadura. Thank you all!

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 1
1.3 Overview . 2

2 ID-PRE Mapping 3
2.1 Introduction . 3
2.2 Preliminaries . 3
2.3 Goals . 4
2.4 Intuitive Description . 4
2.5 Formal Description . 7
2.6 Correctness . 18
2.7 Implementation and Performance 20
2.8 Related Work . 27
2.9 Future Work . 27
2.10 Summary . 29

3 Variable-Length Record Storage 30
3.1 Introduction . 30
3.2 Requirements . 30
3.3 Block Management . 31
3.4 Record Storage . 32
3.5 Storing Records Which Span Several Blocks 38
3.6 Performance Measurements 39
3.7 Future Work . 40
3.8 Summary . 43

4 Index Updates 44
4.1 Introduction . 44
4.2 Text and Attribute Values Index 44
4.3 Path Summary . 47
4.4 Full Text Index . 50
4.5 Index Updates and the Database System 52
4.6 Future Work . 53
4.7 Summary . 54

5 Conclusion 55

iii

1 Introduction

1.1 Motivation

XML is gaining popularity as a flexible storage format and so are native
XML databases. Native XML databases offer significantly better perfor-
mance in comparison to the so called XML-enabled databases. However,
some features which are considered typical and standard for a relational
database system, are missing from many of the native XML database imple-
mentations. One of the reasons is that while relational databases have been
developed since almost 40 years, XML databases are gaining popularity only
recently. Another important factor is that implementing an XML database
is more complex, because of the greater flexibility which XML offers com-
pared to relational tables and the additional constraints such as document
order of nodes. These different requirements are the reason why, although
many of the ideas and principles from the RDBMS world can be borrowed,
their application is not always straightforward, in some cases a completely
new solution needs to be devised and in others, a feature is not needed and
can be left out. The main point of the current work is efficient implemen-
tation of storage mechanisms of an XML database. At this low level of the
architecture of a database system, there are much more similarities between
an RDBMS and a native XML database than on higher levels. However, the
proposed ideas are specifically tailored for the use in an XML database in
order to achieve maximal performance, and at the same time they provide
similar features as their counterparts from the relational database world.

1.2 Contribution

The main contribution of the current work is that it provides the necessary
algorithms and techniques for implementing efficiently updatable data struc-
tures in XML databases. More specifically, this goal is achieved by a new
algorithm for mapping id and pre values of XML nodes, the development
of an optimized mechanism for storing variable length records, as well as
concrete approaches for updating various index types and statistics. The
provided sketch of a formal proof of the correctness of the ID-PRE Map
is another important result, which guarantees that proper implementations
will not return wrong results. The practical value of the work consists in
that many of the described approaches are already implemented in the na-
tive XML database system BaseX and it is relatively straightforward to
implement the rest of them. Thus, BaseX has become a more efficient and
flexible system.

1

1.3 Overview

This thesis is divided into three main sections. The first section defines an
algorithm for mapping stable node identifiers to their document-order posi-
tion (also known as pre values). The second section describes an optimized
approach for storing variable-length records. The last section deals with dif-
ferent problems, which occur during index updates and statistics in native
XML databases.

2

2 ID-PRE Mapping

2.1 Introduction

The document order is an important requirement for an XML database – it
defines the order in which result nodes should be returned when a query is
processed. The order can be also defined by performing depth-first search
in the tree represented by an XML document starting from the root of the
tree. This traversal is also called pre order traversal. Hence pre values are
called the sequentially incremented values generated for each visited node.
Obviously, each pre value identifies a node uniquely. However, pre values are
not stable node identifiers with respect to update operations. For example,
if we consider an insertion of a new node within an XML document, then
all nodes with pre values greater than the pre value of the insert position
will be assigned new pre values. This may not be a big problem, if the pre
values are not explicitly stored but instead the order in which the nodes are
stored is in document order. However, stable node identifiers are needed by
index structures. Index structures are generally used to speed up queries.
The queries themselves need to return the results into document order. This
means that there should be mechanism which efficiently finds the pre value
of a node with a given stable identifier. One trivial solution would be to
store all pairs in a hash map. That guarantees retrieval in constant time but
the required memory will grow linearly with the number of nodes. In the
following sections another mechanism will be proposed as well as a proof-
of-concept implementation, which should show the viability of the proposal.
We will start now with formalizing the problem and its goals.

2.2 Preliminaries

Some important notes will be listed in this section. First, it should be
clear that the set of id values and the set of pre values have the same
cardinality, because they uniquely identify document nodes. Second, in
general the problem of mapping elements from one set to another can only
be solved by explicitly storing each mapping pair. However, this encoding
is not very efficient when the number of elements grows. Therefore, we will
make some assumptions about the id and pre values, which allow a more
efficient encoding in terms of occupied memory.

Assumption 1. id and pre values are non-negative integers.

Non-negative integers are used in many applications as identifiers, since
it is natural for people to work with them.

Assumption 2. id values cannot be reused.

This assumption is also rather natural. It means that when a node with
a given id value is deleted, the id value cannot be re-used for newly inserted

3

nodes. These two assumptions reflect the essence of the sequence objects
from the relational world, which generate sequential integer numbers.

Assumption 3. moving of nodes is not required.

Moving of nodes means that one sub-tree of a document is moved to a
different position and id values of the nodes of the sub-tree are preserved.
This feature has been deliberately left out in XQuery Update Facility 1.0.
However, future work may prove that the current proposal can also easily
handle moving of nodes.

2.3 Goals

The following notations will be used from now on: N is the set of document
nodes P is the set of pre values I is the set of id values.

The goal is to provide a data structure with a function pre : I → P ,
such that for ∀p ∈ P , pre(i) = p iff i and p identify the same node n ∈ N .
Additionally, the structure should require sub-linear memory and all of its
functions should work in sub-linear time, i.e. it should be better than the
trivial solution of storing all pairs in a hash map.

Similarly to the hash map the data structure needs to be notified about
inserted and deleted records. According to assumption 3, it is not required
that id values can explicitly change their pre values and all other XQuery
Update Facility functions can be expressed with inserting and deleting of
nodes. Therefore, the update of the data structure will be performed with
only two functions – insert and delete – and we will require that they need
sub- linear time.

2.4 Intuitive Description

The idea of the method will be informally described in this section. First,
we will consider some particular cases in order to acquire an overview of the
problem.

It should be noted that according to 1, when a database is created, the
sets of pre and id values are equal. This means that one node has a pre
value which is equal to the corresponding id value. In this case, it is not
needed to maintain any kind of mapping and finding the pre value of an id
value is trivial.

Given a newly created database, let us consider inserting new nodes. If
the new nodes are appended at the end of the database, then the pre values
of the nodes will be the same as their corresponding newly generated id
values. Figure 1 illustrates this.

Obviously, finding the pre value of an id value is again trivial in this
case.

4

pre: 0 1 2 3 4
id: 0 1 2 3 4

insert(5, 5, 3)−−−−−−−−→ pre: 0 1 2 3 4
id: 0 1 2 3 4

5 6 7
5 6 7︸ ︷︷ ︸

new

Figure 1: Appending new records to a new database: insert 3 records, the
first of which has id 5, at position 5.

What happens if the insertion point is not after the last existing node? In
this case all nodes after the insertion point will have pre values incremented
with the number of inserted nodes.

pre: 0 1 2 3 4
id: 0 1 2 3 4

insert(2, 5, 3)−−−−−−−−→ pre: 0 1
id: 0 1

2 3 4
5 6 7︸ ︷︷ ︸

new

5 6 7
2 3 4︸ ︷︷ ︸
changed

Figure 2: Inserting new records to a new database: insert 3 records, the first
of which has id 5, at position 2.

So how can we find the pre value of a given id value after insertion?
Obviously, we can split the set of nodes into three intervals:

• when the id value is in the interval [0, 1], then the pre value is the
same

• when the id value is in the interval [2, 4], then the pre value is the id
value plus 3

• when the id value is in the interval [5, 7], then the pre value is 2 plus
offset from the beginning of the interval; e.g. pre(7) = 2 + 7− 5 = 4.

Therefore, we can calculate the pre value of any node given its id value,
if we store the following data:

• last id value before starting updates of the database baseid (in our
case 4)

• the insert-position pre (in our case 2)

• the original id value oid of the node with pre value pre (in our case 2)

• the number of newly inserted nodes inc (in our case 3), and

• the id value of the first new node fid (in our case 5).

Having this data we can find the pre value of an id value using the following
simple definition:

5

• all id values which are less than oid will have the same pre value

• all id values in [oid, baseid] pre value equal to the id value plus inc

• an id value id greater than baseid will have pre value pre + id− fid.

Analogous characteristics has the delete operation. When deleting nodes
from the end of the database, then the mapping is trivial. When deleting
nodes from the middle, then the nodes after the last deleted node will have
pre values decremented with the number of deleted nodes.

pre: 0 1
id: 0 1

2 3 4
2 3 4︸ ︷︷ ︸
delete

5 6 7
5 6 7

delete(2, 3)−−−−−−−→ pre: 0 1
id: 0 1

2 3 4
5 6 7︸ ︷︷ ︸
changed

Figure 3: Deleting records from a new database: delete 3 records from
position 2.

Again we can split the set of nodes into three parts:

• when the id value is in the interval [0, 1], then the pre value is the
same

• when the id value is in the interval [2, 4], then there is no corresponding
pre value; this case, however can be ignored, since id values cannot be
reused, and we don’t require recognizing of non-existing id values.

• when the id value is in the interval [5, 7], then the pre value is 2 plus
offset from the beginning of the interval.

If we try to generalize this example, we will see that we have a definition
similar to the one in the insert case. The values are however different in the
example: the baseid is 7 and inc is −3.

• all id values which are less than oid will have the same pre value

• all id values in [oid, baseid] will have a pre value equal to the id value
plus inc.

These simple examples show that it might be possible to calculate the
pre values, if we store the baseid and the following information for each
update function: (pre, oid, fid, inc). Therefore, the data structure which we
will use will be, in fact, a simple list of (pre, oid, fid, inc) tuples. Given that
the function for finding the pre value always relies on finding the correct oid

6

interval, it would be beneficial to keep the list sorted by oid, since we could
apply binary search1.

In addition to the above mentioned values, we also need to know how
long an inserted interval is. This especially important when we try to find
in which interval an id bigger than baseid (i.e. generated by an insert) is
located. In this case the inc value cannot help us to determine the length
of the interval as shown by the next example.

Let us consider a newly created database with 5 nodes and two update
operations: insert of 3 new nodes with first id 5 at pre 4 and delete of 2
nodes with id values 1 and 2. The next figure shows the result of the two
operations.

pre: 0 1 2 3 4
id: 0 1 2 3 4

insert(4, 5, 3)−−−−−−−−→ pre: 0
id: 0

1 2
1 2︸︷︷︸
delete

3
3

4 5 6
5 6 7︸ ︷︷ ︸

new

7
4

delete(1, 1, 2)−−−−−−−−→ pre: 0 1
id: 0 3

2 3 4
5 6 7︸ ︷︷ ︸

new

5
4

Figure 4: Inserting and deleting records from a new database.

After the delete operation the inc value of the interval from pre 2 to pre
4 is 1, which obviously is not its length.

These examples are very simple. In real a case insert and delete opera-
tions can occur in random order, at random positions, and affecting random
number of subsequent nodes. In the following section we will describe all
possible cases, together with the corresponding handling.

2.5 Formal Description

In this section we will define more precisely and formally the data structure
and the operations, which can be executed. We will introduce the following
functions:

• pre(id) : ID → PRE

• insert(pre, id, c) : PRE × ID × Z →M

• delete(pre, id, c) : PRE × ID × Z →M

As explained in the previous section, the data structure will be a list
of vectors and a natural number value baseid ∈ N. Each vector represents

1 Of course, sorted list may not be the optimal data structure here. For example, a
tree structure can be used, but this is not part of the current work. The important point
is that we can guarantee O (log(n)) when searching for the corresponding interval.

7

an interval of nodes modified by an update operation. Each vector has the
following five components: (pre, oid, fid, lid, inc), where

• pre - pre value

• oid - original id value

• fid - first id value

• lid - last id value

The list is sorted by the first component pre.

Data Structure

In this section we will define the data structure of the proposed mechanism.
First, we will introduce some notations.

Definition 1. PRE ⊂ N0 is the set of all pre values.

Definition 2. ID ⊂ N0 is the set of all id values.

Definition 3. baseid ∈ ID is the id value of the last node in a database in
which no update operation has been performed.

Definition 4. OID ⊂ ID is the set of all id values less than or equal to
baseid.

Definition 5 (ID-PRE Map). An ID-PRE Map M is a baseid-value and a
set L of tuples (pre, oid, fid, lid, inc), where

• pre ∈ PRE,

• oid ∈ OID we will refer to these as “original id values”,

• fid, lid ∈ ID and baseid < fid ≤ lid, and

• inc ∈ Z.

Although this definition is formally correct, it does not show the se-
mantics of each value. We will briefly explain what is the meaning of each
component in order to ease the understanding of the definition of the oper-
ations in the following sections. We assume the nodes are ordered by pre
values, i.e. in document order.

• baseid is the greatest id value in the database before any update op-
eration has been performed.

• each tuple of the set L represents an update operation

8

• pre is the pre value of the first node inserted or deleted by the cor-
responding update operation; if subsequent update operations affect
nodes with pre values less than pre, then the value is adjusted depend-
ing on the number of inserted or removed nodes.

• oid is the id value of the next node, which has not been added by an
insert operation, i.e. which existed in the database before any updates
have been performed.

• fid is the id value of the first node inserted or deleted by the corre-
sponding update operation.

• lid is the id value of the last node inserted or deleted by the corre-
sponding update operation.

• inc is the difference between the pre and id values of all following
nodes, which has not been added by an insert operation, with pre
value between pre of the current tuple and pre of the next one; similar
to pre, if subsequent update operations affect nodes with pre value
less than pre, then the value is adjusted depending on the number of
inserted or deleted nodes.

Note: the adjustments of pre and inc are not necessary. However, they
increase the performance, because they are performed once per update op-
eration and not on each calculation of a pre value.

Operations: pre()

Definition 6. Given an ID-PRE map M with baseid and a set of tuples L
we define the function pre : ID → PRE as follows:

pre(id) =



id if L = ∅ or id < min{oid};
prei + id− fidi where ti = (prei, oidi, fidi, lidi, inci) ∈ L;

such that id ∈ [fidi, lidi],

if id > baseid,

id + inci where ti = (prei, oidi, fidi, lidi, inci)

ti ∈ {t1, ..., tn} ⊆ L, such that

prei = max{pre1, ..., pren} and

oid1 = ... = oidn ≤ id and

@tk ∈ L, such that oidi < oidk ≤ id,

if id ≤ baseid.

The definition can be interpreted as follows:

9

• if there are no update operations or if the node is not affected by
update operations, then its pre value equals its id value.

• if id > baseid, then the id value has been inserted after the initial
creation of the database. Therefore, there should be a tuple ti in L,
which reflects the insert operation, i.e. id ∈ [fidi, lidi]. Since the
inserted nodes are at position prei, then the pre value of id should be
prei + id− fidi.
If there is no such tuple ti, this means that the node with the given id
value has been deleted, and there is no pre value.

• if id ≤ baseid, then it is an id value of a node which existed before
any update operation has been executed. In this case we need to find
all update operations which affect the id value. This is why we search
the original id values oid of all tuples for the required id value id. As
a result we either find a tuple ti, such that oidi = id, or we take the
tuple with the greatest oid less than id. However, since there might
be more than one tuple with the same oid, we take the tuple ti with
the maximal pre value. The reason for this is that the tuple will have
accumulated in its inc value the effect of all update operations which
affect the node with id.

Operations: insert()

First we will define a helper function increment() as follows:

Definition 7. Let t = (pre, oid, fid, lid, inc) ∈ L and c ∈ N1. Then

increment(t, c) = (pre + c, oid, fid, lid, inc + c)

We will now extend the function to act upon a whole set of tuples.

Definition 8. Given a set of tuples L, we define increment(L, pre, c), as
follows:

increment(L, pre, c) = (L \ L≥) ∪ {increment(ti, c)|ti ∈ L≥}

where

L≥ = {ti|ti = (prei, oidi, fidi, lidi, inci) ∈ L and prei ≥ pre}.

The meaning behind the increment() function is that it increments with
c the pre and inc components of all tuples which have pre greater than or
equal to the given one.

Definition 9. Given an ID-PRE map M with baseid and a set of tuples L
we define the function insert : PRE×ID×N1 →M ′, insert(pre, id, c) = M ′

10

as follows:
Case I: if L = ∅ and pre = id and id = baseid + 1, then

M ′ = 〈baseid + c, L〉

Case II: if L = ∅ and either pre 6= id or id > baseid + 1, then

M ′ = 〈baseid, L ∪ {(pre, pre, id, id + c− 1, c)}〉

Case III: if L 6= ∅, and @t′ = (pre′, oid′, fid′, lid′, inc′) ∈ L, such that pre′ <
pre, then

M ′ = 〈baseid, increment(L, pre, c) ∪ {(pre, pre, id, id + c− 1, c)}〉

Case IV: if L 6= ∅ and ∃t′ = (pre′, oid′, fid′, lid′, inc′) ∈ L, such that pre′ <
pre, then M ′ = 〈baseid, L′〉, where L′ is defined as follows:
Case 1: if ∃tk = (prek, oidk, fidk, lidk, inck) ∈ L, such that prek = pre, then

L′ = increment(L, pre, c) ∪ {(pre, oidk, id, id + c− 1, inc′ + c)}

Case 2: if ∃tk = (prek, oidk, fidk, lidk, inck) ∈ L, such that prek < pre <
prek + lidk − fidk, then

L′ = increment(L \ {tk}, pre, c) ∪ {
t1k =(prek, oidk, fidk, lid∗k, inc∗k),

t =(pre, oidk, id, id + c− 1, inc∗k + c),

t2k =(pre + c, oidk, lid∗k + 1, lidk, inck + c)}

where

lid∗k = fidk + pre− prek − 1 and

inc∗k = inck − (lidk − lid∗k)

Case 3: if none of the cases 1 or 2, then

L′ = increment(L, pre, c) ∪ {(pre, pre− inc′, id, id + c− 1, inc′ + c)}.

Intuitively the definition of the insert() function can be explained as
follows: Cases I and II are trivial since there are no recorded update op-
erations. Case I refers to the situation when new entries are appended at
the end of the database. Case II, on the other hand, describes the insert
of nodes somewhere in the middle of a database in which either no updates
have been executed, or if any, they have been trivial ones such as in Case I.
Therefore, we need simply to add the new tuple to the empty set L.

The rest of the cases show how new tuples interact with existing ones.
If we represent the original records of database and the inserted or deleted

11

0
pre

Case III

updated

Case IV, 2

updated

Case IV, 2

updated

Case IV, 2Case IV, 3 Case IV, 3

Case IV, 1 Case IV, 1

Figure 5: Insert intervals

ones on a straight line, we could split the set of pre values into regions as
shown on figure 5.

When new records are inserted in one of the region types, the corre-
sponding case is applied. Let us start with Case III: we insert new records
in front of all other updated records. Consequently, we need to simply add
the new tuple and increment all following tuples with the number of inserted
records. We move on with Case IV in which we assume that there is at least
one tuple before the insertion point. 3 sub-cases can be derived:

• Sub-case 1: the insertion point is at the same pre value at which there
is already a tuple tk. In this case we need to increment all following
tuples (including tk) and add the new tuple. The new tuple must have
the same oid as tk, since it is inserted at the same position as tk and
therefore, affects the same database records. Further, the inc value of
the new tuple should reflect all update operations before the insertion
point, and this is why we add the inc′ value from the previous tuple
to the number of newly inserted nodes.

• Sub-case 2: the insertion point is in the middle of an interval rep-
resented by an existing tuple tk. In this case we need to split the
tuple into two new tuples. The length of the first new interval is
pre− prek − 1 and therefore its corresponding tuple has last id value
equal to lid∗k = fidk+pre−prek−1. Further, inck should be decreased
with the length of the second new interval, namely inc∗k = lidk − lid∗k.
The second new tuple must represent an interval starting at the split
point. This means that the pre value of t2k should be equal to pre and
the first id should be lid∗k + 1. Finally, we need then to insert the
new tuple. However, since we insert at position pre and we already
have a tuple at that position (t2k), we apply the same operations as in
sub-case 1: the inc value of t should reflect all operations before pre,
i.e. inc = inc∗k + c, and all following tuples, including t2k should be
incremented with c.

• Sub-case 3: the insertion point is in an interval in which no previous
updates have been executed. This case is similar with sub-case 1.
The only difference is that oid = pre − inc′. This expression comes

12

from the definition of the pre() function: pre(id) = id + inc ⇔ id =
pre(id)− inc.

The definition is complete since it defines the function for any possible
insertion point. We will now proceed with the delete operation.

Operations: delete()

In the previous section we saw the different cases which can occur when
inserting new records at a given position. The main difference between the
delete and the insert operation is that by the latter one there are more
possibilities how the deleted interval overlaps with the existing intervals,
which were modified by other update operations. We will now give a detailed
description of all the possible cases, but first, we will define some helper
functions.

Definition 10. Given a set of tuples L, a pre value pre ∈ PRE and a
non-negative integer c ∈ N1, we define range(L, pre, c) as follows:

range(L, pre, c) = {ti|ti = (prei, oidi, fidi, lidi, inci) ∈ L and

pre ≤ prei ≤ prei + lidi − fidi ≤ pre + c− 1}.

Definition 11. Given a set of tuples L, we define max(L) as follows:

max(L) = t = (pre, oid, fid, lid, inc) ∈ L, such that

@t′ = (pre′, oid′, fid′, lid′, inc′) ∈ L, for which pre < pre′.

Given a tuple t = (pre, oid, fid, lid, inc) ∈ L, we introduce the following
convenience designations:

premin = pre

premax = pre + fid− lid.

Definition 12. Given an ID-PRE map M with baseid and a set of tuples L
we define the function delete : PRE×ID×N1 →M ′, delete(pre, id, c) = M ′

as follows:
Case I: if L = ∅ and pre = id and id + c = baseid + 1, then

M ′ = 〈baseid− c, L〉

Case II: if L = ∅ and either pre 6= id or id 6= baseid + 1, then

M ′ = 〈baseid, L ∪ {(pre, id,−1,−1,−c)}〉

Case III: if L 6= ∅, then M ′ = 〈baseid, L′〉, where L′ is defined as:

L′ = increment((L \ {t′, t′′}) \ range(L, pre, c), pre + c− 1,−c) ∪K

13

where {t′, t′′} ∩ range(L, pre, c) = ∅, pre ≤ pre′max ≤ pre + c − 1 and
pre ≤ pre′′min ≤ pre + c − 1, and K is defined for the different cases as
follows:
Case 1 (add new): if @t′ and @t′′, then

K = {(prestart, oid,−1,−1, inc− c)}, where

oid =

{
id if range(L, pre, c) = ∅
oid∗ else

inc =


0 if range(L, pre, c) = ∅ and @tk ∈ L, such that prek ≤ pre

inck if range(L, pre, c) = ∅ and ∃tk ∈ L, such that prek ≤ pre

inc∗ if range(L, pre, c) 6= ∅

Case 2 (shrink from beginning): if @t′ and ∃t′′, then

K = {(prestart, oid′′, fid′′ + preend − pre′′min + 1, lid′′, inc′′ − c)}

Case 3 (shrink from end): if ∃t′ and @t′′, then

K = {(pre′min, oid
′, fid′, fid′ + prestart − pre′min − 1, inc− c)}, where

inc =

{
inc′ if range(L, pre, c) = ∅
inc∗ if range(L, pre, c) 6= ∅

Case 4 (shrink both): if ∃t′ and ∃t′′, then

K = {(pre′min, oid
′, fid′, fid′ + prestart − pre′min − 1, inc− c),

(prestart, oid
′′, fid′′ + preend − pre′′min + 1, lid′′, inc′′ − c)}, where

inc =

{
inc′ if range(L, pre, c) = ∅
inc∗ if range(L, pre, c) 6= ∅

Case 5 (split): if ∃t′, such that pre′min < prestart < preend < pre′max, then

K = {(pre′min, oid
′, fid′, fid′ + prestart − pre′min − 1, inc− c),

(prestart, oid
′, fid′ + prestart − pre′min + c, lid′, inc′ − c)}

where

prestart = pre, preend = pre + c− 1 and

t∗ = (pre∗, oid∗, fid∗, lid∗, inc∗) = max(range(L, pre, c)).

We will now explain the formal definitions in more detail. We will start
with definition 10 of the range() function. What this function does is simply
to select all tuples of a given set L, which lie completely in the interval
[pre, pre + c− 1].

14

The next definition 11 defines the function max(), which given a set of
tuples L returns the tuple with the highest pre.

We now turn to the actual definition of the delete() function. Similar to
the insert() function, we first have two trivial cases I and II.

Case I describes the generated mapping when deleting records from a
database in which no updates have been executed and the deleted records
are located at the end. In this case we need simply to decrease the value of
baseid with the number of deleted records c.

Case II handles again the case when no updates have been executed in
the database, but this time the deleted records are not located at the end.
This means we need to insert a new tuple to denote the delete operation.
The pre value and the original id value are directly provided as arguments
of the function and we use them. Since we delete c records, we set the inc
component to −c, which means that the pre values of all records after the
deleted ones are decreased by c. The fid and lid components are set to −1.
There are several reasons for this. First, according to assumption 1 the id
values are non-negative integers, which means that −1 is an invalid id value.
This is also valid for the id values of the deleted records, because according
to assumption 2 id values cannot be reused. Second, since both fid and
lid values are equal, the length of the interval represented by the tuple is 0,
which naturally corresponds to the effect of a delete operation.

We now continue to Case III. It describes how the delete operation
changes the mapping when there are already other tuples representing up-
dates. In such case we need to remove all tuples for records with pre values
in the deleted interval. This is exactly the range defined by the function
range(L, pre, c). Further, we need to modify the tuples where deleted in-
terval boundaries lie, if such exist. Finally, similar to the insert() function,
all subsequent records need to be decremented by c (or equivalently incre-
mented by −c).

0
pre

t′

pre′min pre′max

range(L, pre, c)

t∗ t′′

pre′′min pre′′max

deleted
prestart preend

Figure 6: Delete intervals

Figure 6 depicts graphically the main terms used in the definition. The
tuples t′ and t′′ does not belong to range(L, pre, c) and are such that the
start and end of the delete interval lie within them. Of course, this is not
always the case: it is possible that either the start or the end, or both of

15

them does not land in an existing tuple. Each sub-case of Case III describes
one such possibility.

0
pre

tk

range(L, pre, c)

t∗

deleted
prestart preend

Figure 7: Delete intervals: case III, sub-case 1

Sub-case 1 handles the case when both start and end points do not land
in existing tuples. In this case, all tuples from range(L, pre, c) are removed
and a new one is inserted. Figure 7 depicts this case.

An important question is how the oid and inc components of the new
tuple are defined. If there are no tuples which are removed, i.e. the set
returned by range(L, pre, c) is empty, then we take the id argument of the
delete() function as oid. In this sub-case it is safe to do so, because we are
sure that the given id argument is not generated by an insert (otherwise,
the starting point would land into a tuple). The inc component is the inc
of the previous tuple tk minus c or, if tk does not exist, simply −c. The
reason for this is that the inc component of the new tuple must reflect not
only the delete but also all previous updates (if any) of records with smaller
pre values.

On the other hand, when there are tuples to be removed, then it is
important to set the oid component to the oid component of the last tuple
t∗ from the removed set. This is because it is not sure, if the id argument is
generated by an insert operation. This can well be the case, if, for example,
prestart is exactly the same as the pre value of the first tuple to be removed.
The inc component must be set to the inc component of t∗ minus c, since,
similar to the previous case, it must reflect the updates represented by the
removed tuples.

We move on to sub-case 2. Here the start of the deleted interval again
does not lie in an existing tuple, but the end does, as shown by figure 8.

In this situation we need to “cut” the first half of the tuple t′′, decrement
its inc value with c, so that it reflects the delete operation and set its pre
value to prestart, since its first record will move to the left after the delete.

Sub-case 3, shown in figure 9, is very similar to sub-case 2.
Now, we need to “cut” the second half of the tuple t′ and set the inc

component to inc− c. Similar to sub-case 1, the reason behind this is, that
we need to reflect somehow the effect of the updates represented by the
removed tuples.

16

0
pre

range(L, pre, c)

t∗ t′′

pre′′min pre′′max

deleted
prestart preend

Figure 8: Delete intervals: case III, sub-case 2

0
pre

t′

pre′min pre′max

range(L, pre, c)

t∗

deleted
prestart preend

Figure 9: Delete intervals: case III, sub-case 3

Sub-case 4 is depicted in figure 6. It is handled by combining sub-case 2
and 3: the tuple t′ is shrunk from the end, t′′ from the beginning, and the
inc components are adjusted.

The sub-cases described so far are well-defined when t′ 6= t′′ and t′ = t′′.
Sub-case 5, on the other hand, can occur only if t′ = t′′, namely when the
delete operation removes only records, which have been inserted by another
update. In this case, the delete interval is completely contained in a tuple
(see figure 10).

0
pre

t′

pre′min pre′max

deleted
prestart preend

Figure 10: Delete intervals: case III, sub-case 5

Consequently we need to split the tuple t′ into two adjacent tuples.
The first tuple will end at prestart − 1, and the second one will start at
prestart. The fid, nid, and inc components of the new tuples are adjusted
correspondingly to reflect their lengths.

17

2.6 Correctness

Formal definitions are difficult to read and understand and this is why we
have provided detailed explanations after each function definition. On the
other hand, they allow easier identification of inconsistencies and they are
necessary when one wants to prove correctness of an algorithm. A complete
correctness proof of the algorithm will not be presented. Instead we will
describe the main idea of one possible proof.

First, we need to define what we would consider as a correct behavior of
our algorithm. The simplest algorithm for ID-PRE mapping is storing all id
values sorted by their corresponding pre value. If we show that for each id
value our algorithm gives the same pre value as this naive implementation,
then it can be considered correct. However, before we start with the proof,
we need to formally define this trivial algorithm.

Definition 13. A trivial ID-PRE Map M0 is a finite sequence of id values
(id0, id1, ..., idn) and the following operations:

• pre0 : ID → PRE, defined as

pre0(id) = i, where idi ∈M0 such that idi = id

• insert0(pre, id, c) = M ′0, defined as

M ′0 = (id0, id1, ..., idpre−1, id, id + 1, ..., id + c− 1, idpre, ..., idn)

• delete0(pre, id, c) = M ′0, defined as

M ′0 = (id0, id1, ..., idpre−1, idpre+c, ..., idn)

Now, we are ready to prove the following statement:

Theorem 1. Given an ID-PRE Map M and a trivial ID-PRE Map M0,
then

∀id ∈ ID, pre(id) = pre0(id).

Proof. We will not present the complete proof of the theorem. Instead, we
will only sketch the proof and the details will be left out of the scope of this
work.

This proof will use mathematical induction over the number of executed
update operations.

Base Case. The base case is when no update operation has been exe-
cuted. In this case the id values will be equal to the pre values. This also
means that the set L of the ID-PRE map M will be empty and therefore,
according to definition 6, pre(id) = id.

18

Inductive Step. Let us assume that the statement holds when n > 0
update operations have been executed in the database, respectively. the
ID-PRE Map. We will show that the statements holds for n + 1, too.

The new update operation can be either an insert or a delete. For each
update operation type we need to consider all possible cases as defined in
the corresponding function definition. After that we need to show that in
this case the statement holds. For the sake of brevity we will prove the
statement only for one case; the rest of the cases can be proved analogously.

Let us assume that the new update operation is a delete, such that we
fall in Case III, sub-case 2 of definition 12, i.e. L 6= ∅ and @t′, such that
t′ 6∈ range(L, pre, c) and pre ≤ pre′max ≤ pre + c − 1, but ∃t′′, such that
t′′ 6∈ range(L, pre, c) and pre ≤ pre′′min ≤ pre + c − 1. According to the
definition, the resulting ID-PRE Map is M ′ = 〈baseid, L′〉, where L′ is

L′ = increment((L \ {t′′}) \ range(L, pre, c), pre + c− 1,−c)∪
{(prestart, oid′′, fid′′ + preend − pre′′min + 1, lid′′, inc′′ − c)}

This case is depicted by figure 8.
Now let us consider the result of the pre() function for a given idk as

defined by definition 6.
Case 1: if idk < min{oid}, then pre(idk) = idk. In this case the pre

value of the record has not been affected by updates. This means that
pre0(idk) = idk, too.

Case 2: if idk > baseid, then pre(idk) = prei + idk − fidi, where ti =
(prei, oidi, fidi, lidi, inci) ∈ L′, such that idk ∈ [fidi, lidi]. We need to
consider two cases here:

• if prei < pre, then the record is not affected by the update and there-
fore according to the induction assumption pre(idk) = pre0(idk).

• if prei ≥ pre, then the value prei should have been decremented with
c. This means, that before the delete operation pre′(idk) = prei + c+
idk−fidi. However, according to the induction assumption, before the
delete pre′0(idk) = pre′(idk), too. The effect of the delete operation on
the trivial ID-PRE Map is that the pre values of all records after the
deleted range are decreased by c. Therefore,

pre0(idk) = pre′0(idk)− c = pre′(idk)− c =

prei + c + idk − fidi − c =

prei + idk − fidi = pre(idk)

Case 3: idk ≤ baseid can be proved similarly to case 2.

19

2.7 Implementation and Performance

Besides providing the means to prove correctness of the algorithm, the formal
definition can be used for a straightforward implementation of the algorithm.
The only difficulty which needs to be solved is how to find the tuples we
need. In this section we will present a simple implementation in order to
show the practical applicability of the approach. It uses binary search and
linear scan, so it has a lot of room for optimizations, some of which are
proposed in the next section “Future Work”.

Data Structure

The formal definition from the previous section uses tuples of the form
(pre, oid, fid, lid, inc). In this implementation we will use an array of inte-
gers for each component. Elements from the different arrays with the same
index correspond to the components of one tuple. The tuples will be sorted
according to their pre values. This will ensure a logarithmic complexity for
searching by pre and oid.

Function: pre()

The pre() function is relatively simple.

Algorithm 1 Function pre(id)

1: function pre(id)
2: if size = 0 or id < pre0 then
3: return id . Not affected by updates
4: else if id > baseid then
5: for i← 0, size− 1 do . Find the tuple, which added id
6: if fidi ≤ id ≤ lidi then
7: return prei + id− fidi
8: end if
9: end for

10: return −1 . Record has been deleted: should not occur
11: else
12: i← bsearchLast(oid list, id)
13: return id + inci
14: end if
15: end function

As already said, the implementation follows closely the different cases
from the formal definition of pre(). We perform a linear scan, in which we
search for an id value, that has been inserted by an update operation and
we should also note that the function bsearchLast(array, value) → index

20

performs a binary search for the value in the given array and returns the
greatest index of the greatest element which is less than or equal to value.

Function: insert()

The insert() implementation follows closely the formal definition, too. The
function bsearch(array, value) → index performs binary search for the
value in array and returns the index where the value was found, or if
the value is not found, −index− 1 is returned, where index is the position,
where the value should be inserted. The procedure add() inserts a new tuple
at the position specified by its first argument and increment(index, value)
increments each element in the arrays pre and inc with value starting with
the element at position index.

Function: delete()

The delete() function is also to a great extend based on its formal definition
but due to its complexity it is distributed across several helper functions.
The trivial case when there are no other tuples is handled simply and cor-
responds directly to the definition. However, when there are other tuples,
we need to find which tuples are affected by the delete. Therefore, we use
the function find(pre) → index, which performs binary search for pre in
the array with pre values. The binary search procedure considers a tuple a
positive match not only when the pre component is equal to pre, but also
when the pre is within the interval defined by the tuple. Therefore, the
result of the find function is the index of either the tuple which contains
pre, or the tuple with the least pre component bigger than pre.

After locating the first affected tuple, we need to find the last one. We
also need to identify the tuples which are completely “contained” in the
delete interval so that we can remove them. This is performed by the range()
function which, starting from the first affected tuple at istart, checks if a tuple
is completely within the interval [pre, preend]. The result of the function are
the indexes of the first and the last tuple to remove. If the last index is
smaller than the first one, then no tuples can be removed, i.e. no tuples are
completely contained in the delete interval, which further means that at most
one tuple is affected (and hence, iend = istart). On the other hand, we need
to remove the tuples, which is the task of the function remove(index, index).

What remains to be done is to adjust the tuples which are not com-
pletely contained in the delete interval. The function adjustTuples() does
exactly this using the sub-cases of case III of definition 12. The function
copy(index, index) adds a new tuple using the values of another one. We
should also notice, that in all cases the tuple at index iend is processed and
therefore, the increment() function starts from iend + 1. The only case in
which this not true, is in sub-case 3. This is why iend is decremented by −1.

21

Algorithm 2 Function insert(pre, id, c)

1: procedure insert(pre, id, c)
2: if size = 0 then
3: if pre = id and id = baseid + 1 then
4: baseid← baseid + c . Case I
5: else
6: add(0, pre, pre, id, id + c− 1, c) . Case II
7: end if
8: else
9: i← bsearch(pre list, pre)

10: if i = 0 or i = −1 then
11: i← 0
12: oid = pre . Case III
13: inc = c
14: else if i > 0 then
15: oid = oidi . Case IV, 1
16: inc = inci−1 + c
17: else
18: i← −i− 1
19: n← lidi−1 − fidi−1 + 1
20: if pre < prei−1 + n then . Case IV, 2
21: add(i, pre, oidi−1, fidi−1 + pre− prei−1, lidi−1, inci−1)

22: lidi−1 ← fidi − 1 . Shrink the old tuple
23: inci−1 ← inci−1 − n + pre− prei−1

24: oid← oidi−1
25: inc← inci−1 + c
26: else
27: oid← pre− inci−1 . Case IV, 3
28: inc← inci−1 + c
29: end if
30: end if
31: increment(i, c)
32: add(i, pre, oid, id, id + c− 1, inc)
33: end if
34: end procedure

22

Algorithm 3 Function delete(pre, id, c)

1: procedure delete(pre, id, c)
2: if size = 0 then
3: if pre = id and id + c = baseid + 1 then
4: baseid← baseid− c . Case I
5: else
6: add(0, pre, id,−1,−1,−c) . Case II
7: end if
8: else . Case III
9: preend ← pre + c− 1

10: istart ←find(pre)
11: rstart, rend ←range(istart, pre, preend)
12: if rstart ≤ rend then
13: inc← inc[rend]
14: oid← oid[rend]
15: iend ← rstart
16: remove(rstart, rend)
17: else
18: inc← inc[istart − 1] or 0, if istart ≤ 0
19: oid← id
20: iend ← istart
21: end if
22: adjustTuples(istart, iend, pre, oid, inc, c)
23: end if
24: end procedure

23

Algorithm 4 Function adjustTuples(istart, iend, pre, oid, inc, c)

1: procedure adjustTuples(istart, iend, pre, oid, inc, c)
2: if size ≤ istart then
3: add(istart, pre, oid,−1,−1, inc− c); . Sub-case 1
4: else if istart < iend then
5: if iend < size and pre[iend] ≤ preend then
6: shrinkFromStart(iend, pre, c) . Sub-case 4
7: shrinkFromEnd(istart, pre, inc− c)
8: else
9: iend ← iend − 1 . Sub-case 3

10: shrinkFromEnd(istart, pre, inc− c)
11: end if
12: else if pre < preend < pre[istart] then
13: add(iend, pre, oid,−1,−1, inc− c); . Sub-case 1
14: else if pre ≤ pre[istart] < preend then
15: shrinkFromStart(iend, pre, c) . Sub-case 2
16: else
17: iend ← iend + 1 . Sub-case 5
18: copy(istart, iend)
19: shrinkFromStart(iend, pre, c)
20: shrinkFromEnd(istart, pre, inc− c)
21: end if
22: increment(iend + 1,−c)
23: end procedure

24

Performance: pre()

0 1 2 3 4 5 6

·105

0

0.1

0.2

0.3

number of tuples

ti
m

e
(i

n
m

s)

(a) with the first 1000 id values

0 1 2 3 4 5 6

·105

0

50

100

150

200

250

number of tuples
ti

m
e

(i
n

m
s)

(b) with the second 1000 id values

Figure 11: Performance of pre().

Figure 11 shows how the performance of the pre() function changes with
the number of tuples in the ID-PRE map. The ID-PRE map used in this
test assumes a database with 1000 initial records (i.e. baseid = 1000).
Subsequently, inserts are executed until 30000 new tuples are generated in
the ID-PRE map and then the performance of pre() is measured for the first
1000 id values (from 0 to 999) and the second id values (from 1000 to 1999).
This test is repeated 7 times with the last test using 600000 tuples.

The values of the first graph show the time needed by the function to
calculate the pre values of the first 1000 id values and the second graph – of
the second 1000 id values. The reason for the huge performance difference
is due to the fact that for id values smaller that baseid the algorithm 1 uses
binary search, i.e. the complexity is O (log(N)), and for id values greater
than baseid – linear search (O (N)).

Performance: insert()

Figure 12 depicts the performance of the insert() function. Similar to the
previous test, the ID-PRE map has baseid = 1000. Then inserts are exe-
cuted until 30000 new tuples are generated and the performance of single
insert() call is measured. This is repeated 7 times, and each insert() call
has the same arguments.

If we look at the implementation of the insert() function, we will notice
that the operations which determine the complexity are the binary search
and the incrementing of the pre and inc components of subsequent tuples
(we assume that adding a new element needs constant time). Thus, the com-
plexity of the function is O (log(N) + N). While the increment operation
substantially increases the execution time, it is acceptable, since otherwise

25

0 1 2 3 4 5 6

·105

0

2

4

6

8

number of tuples

ti
m

e
(i

n
m

s)

Figure 12: Performance of insert() for a single operation.

it should have been implemented in pre(), which is expected to be called
much more often and therefore, would have worse overall performance.

Performance: delete()

0 1 2 3 4 5 6

·105

0

2

4

6

number of tuples

ti
m

e
(i

n
m

s)

Figure 13: Performance of delete() for a single operation.

The performance of the delete() function is depicted on figure 13. The
tests are performed under the same conditions as for the insert() function.
In each test a single delete operation is executed with the same arguments.

The complexity of the delete() function is the same as this of the insert().

26

First we use binary search to find the start of the deleted interval. After
that a linear search is applied to find its end and finally to increment all
subsequent tuples. This gives complexity O (log(N) + N).

2.8 Related Work

Different approach, than the one presented here, has been used by the au-
thors of MonetDB/XQuery [BGvK+06]. In their implementation, they di-
vide the set of document nodes into pages, each capable of storing k nodes.
The nodes in each page are sorted by their pre values, but the pages them-
selves are physically ordered by the id value of their first nodes. Additionally,
a separate page-mapping table is maintained, which defines the logical, pre
order, of the pages.

Compared to our ID-PRE Map, this solution differs in that although
the mapping contains only one record per page, it is still linear with respect
to the number of stored nodes. In contrast the algorithm proposed here
scales linearly with the number of update operations, which in general is
much smaller than the actual number of nodes. Further, using the page-
map table approach means that not all pages will be fully utilized, even
though later insert operations may add new nodes to them.

2.9 Future Work

Bulk Operations

The functions, which we defined in the previous sections, represent only a
single operation. However, this is seldom the case in real scenarios – it is
much more probable that we need the pre values of a set of id values than
of a single one. Additionally, a transaction may consists of multiple insert
or delete operations each modifying a different range of database records.
Thus, depending on the implementation of the XML database, the overall
performance can be increased if some assumptions are made about the input
data. For example, if we need to find the pre values of a list of id values and
we assume that the list is sorted, we could optimize the binary search in the
pre() function to traverse a smaller range of tuples each time. Of course,
before making such optimizations, one should analyze usage patterns in the
corresponding database system.

Optimization

In the previous section we showed how the number of tuples in the ID-PRE
map affects the performance of the different operations. We can consider
the performance of the update functions acceptable mainly because they
are executed only once per database update regardless of the number of
updated database records. Much more critical is the performance of the

27

pre() function, which needs to be called for every id value. In the best case,
if an id value is not affected by updates, the pre() function needs constant
time – it just returns the id value itself. The worst case is when each single
database record is inserted by a separate insert operation, and the order of
execution of these inserts does not follow the pre order. In this case, each
database record would correspond to a tuple in the ID-PRE map and the
map will occupy 5 times more main memory as the trivial map defined in
13 2. Further, since all id values will be greater than baseid (except the id
value of the first insert, which will be an append operation), we will fall in
the conditional branch of the function where we need to execute a linear
search to find the corresponding tuple. Therefore, in this situation it is not
appropriate to use ID-PRE mapping.

While we cannot control the order in which the update operations are
executed, we could optimize the pre() function. The case which needs to be
optimized is obviously the one when the id value is greater than baseid and
we perform binary search. The reason for this is that the tuples are ordered
by their pre values.

One possible optimization is to maintain an additional index, which can
be used for fast search by id values. On the other hand, this will bring
additional overhead in the update operations.

Further improvement brings the support of merging neighboring records
which represent consequent id-pre intervals. Figure 14 depicts such scenario.
This can decrease the number of records in the ID-PRE map and hence,
increase the performance. This extension can be also very easy implemented:
after executing each insert or delete operation, we need to check if the two
new neighboring records can be merged.

pre: 0
id: 0

1 2 3
2 3 4︸ ︷︷ ︸
insert1

4 5 6
5 6 7︸ ︷︷ ︸
insert2

7
1
→ pre: 0

id: 0
1 2 3 4 5 6
2 3 4 5 6 7︸ ︷︷ ︸

insert

7
1

Figure 14: Merging neighboring records.

Another simple and straightforward optimization is to leverage the mul-
tiprocessing capabilities of modern computer systems. There are two possi-
bilities to apply parallelization. First, we could parallelize the execution of
the linear search in the pre() function by splitting the set of tuples into k
sections and starting k threads, each of which searches for the given id value
in one of the section. While this does not solve the problem in general, it
may bring the performance to an acceptable level.

A second opportunity is to parallelize the calls to the pre() function. In
many cases a query in an XML database will return not a single database
node but several ones. In this case we could again split the set of id values

25 times, because each tuple consists of 5 components

28

into k sections and start k threads, each of which executes the pre() function
of each id value from a section.

There are also cases in which parallelization actually decreases the over-
all performance. Therefore, it should be applied after careful performance
testing and tuning.

Concurrent Access

Similar to other database resources, such as indexes, the ID-PRE map par-
ticipates in transactions. This is why it is important to ensure safe concur-
rent access to it. There are two main questions which need to be solved:
first, what concurrency control should be used when more than one trans-
action calls a method of the ID-PRE map and second, how the calls the
the ID-PRE map functions should be integrated in the database operations.
The answers of these questions depend mainly on the concurrency control
protocol used by the concrete database implementation.

Persistent Storage

Another open question related to transactions is how and when the ID-PRE
map should be saved to a persistent storage. This a very important require-
ment to any database which claims to support ACID transactions. Cur-
rently, we have considered the ID-PRE map as an in-memory data structure
and the proposed implementation vastly relies on very fast random access.
On the other hand, a significant advantage is that it requires relatively small
amount of main memory, which also suggests that a complete flush of the
data structure to persistent storage will not be expensive.

2.10 Summary

The purpose of this section is not to provide a complete optimized implemen-
tation, but rather to analyze the different cases which when implementing
the algorithm and provide formal means of proving its correctness. The
formal definitions can serve as the base for various implementations with
different performance characteristics. On the other hand, the feasibility and
the general applicability of the approach can be proved only by real use-
cases.

29

3 Variable-Length Record Storage

3.1 Introduction

Storing records with variable length is very common and well-studied prob-
lem in the relational databases. Variable-length records occur even more
often in native XML databases than in relation databases. They appear
mainly in the form of texts: text nodes, attribute values, tag names, or
namespace names. Therefore, it is important to have an efficient and robust
mechanism to store such records.

The standard solution for storing variable-length records is the slotted
page layout, a description of which can be found in the book “Database
Management Systems” from Ramakrishnan[RG00]. This approach can as
well be used in native XML databases. It is already used in the native XML
databases Sedna[FGK06] and Natix[FHK+02].

The purpose of this section is not to describe the slot page approach,
but rather to reveal some implementation details, which may be difficult to
figure out.

3.2 Requirements

Our main goal is to efficiently store and retrieve records with variable length.
This means that if a record is represented as an array of bytes, we would like
to store it and get a record identifier rid, which we can later use to retrieve or
delete the record. Thus, the interface of our implementation should provide
at least the following methods:

<<interface>>

RecordStorage

+read(rid: long): byte[]

+insert(data: byte[]): long

+delete(rid: long)

Figure 15: Record storage: interface definition.

Further, we require that the space occupied by deleted records should
be re-used. Therefore, when inserting a new record with a given length, we
must be able to quickly find a place where it can be inserted.

An additional requirement which we pose on the implementation is to
perform block-wise the input and output operations from and to the un-
derlying storage. This requirement is determined by the way how modern
database systems work, rather than a real need. It is important because the
storage mechanism needs to be integrated into the rest of the system.

30

3.3 Block Management

The requirement to perform block-wise I/O operations means that we need
to manage somehow the blocks in a file. A simple approach is to use the
first block of a file to store a bit map, in which every bit corresponds to a
block and shows if it is used or not. For example, if we assume that the size
of a block in a file is 4096 bytes, then we have 32768 bits with which we
can track the next 32768 blocks of the file. If all these blocks are occupied,
then we need another block which we use to track the next 32768 blocks,
and so on. Basically, this approach divides a file into segments containing
fixed number of blocks. Each segment has a header block with a bit map
with the occupied and empty blocks in the segment. Figure 16 illustrates
this file layout.

header

0 1

0

2

1

3

2

4

3

5

4

6

5

header

7 8

6

9

7

10

8

11

9

12

10

13

11

Figure 16: Empty block management: header blocks with bit maps.

This file organization should be transparent for the higher levels of the
system. Therefore, header blocks cannot be read and higher levels need to
use logical block identifiers. Let us assume that all blocks in a file, including
the header blocks, are enumerated starting from 0. Now, if we assume that
the logical identifiers start from 0, too, then we can calculate the actual
block identifier using the following formula:

translate(logicalId) =

⌊
logicalId

SegmentSize

⌋
+ logicalId + 1

where SegmentSize is number of blocks in each segment. Figure 16 exem-
plifies this with SegmentSize = 6.

The implementation itself must have at least the methods defined in
figure 17.

It is relatively easy to implement these four methods. The methods
readBlock and writeBlock should first translate the logical block identifier,
then position at the actual block, and finally read, respectively write, the
block content.

Deleting a block is very simple, too: given the block number, we need
to set the corresponding bit in the corresponding segment header block to
0. The corresponding header block number can be calculated using the
following formula:

header(logicalId) =

(⌊
logicalId

SegmentSize

⌋
+ 1

)
SegmentSize

31

<<interface>>

BlockStorage

+readBlock(blockId: long): byte[]

+writeBlock(blockId: long, data: byte[])

+createBlock(): long

+deleteBlock(blockId: long)

Figure 17: Block management: interface definition.

Optionally, if the deleted block is the last block in the file, we may wish to
shrink the file.

Creating a new block is a little bit more involved, because we need to
search the header blocks for a free block. If we find a 0 bit in one of the
header blocks, then we set it to 1 and return the logical block number of the
corresponding block. If all blocks are occupied, then we need to allocate a
new header block and set its first bit to 1.

While executing performance tests, it was found that scanning all header
blocks when a new data block needs to be created is not very efficient. A
simple optimization is to maintain an in-memory bit-map where every bit
represents a header block and has value of 1, if the corresponding segment
does not have free blocks (i.e. the corresponding header block contains only
1 bits) and 0, otherwise. Since the number of header blocks, respectively
segments, is relatively small compared to the number of blocks in the file, this
bit-map will not pose a significant memory overhead. Further, it needs to
be updated only when a header block becomes full. The biggest advantage,
as we will see later in the section with the performance measurements, is
that we avoid the linear complexity when we need to allocate a new block.

3.4 Record Storage

Besides keeping track of empty blocks, another important requirement is the
ability to reuse the space freed after a record has been deleted. In order to
do this we need to keep the number of free bytes in each block and we need
to do it efficiently. For example, the naive solution of checking each block
for free space would be very inefficient, because in the worse case we need
to check every block just to insert an entry.

A common solution to this problem is the so called directory of blocks
which is described in [RG00]. In essence, the approach consists of main-
taining of a so called directory which contains references to the actual data
blocks and, additionally, the number of free bytes in each data block (in
our implementation we will use number of used bytes, for reasons explained
further below). The directory itself is a linked list of blocks. This means,

32

that it is only needed to check the directory blocks for a block with enough
empty space and since one directory blocks contains typically many refer-
ences to data blocks, the search is much more efficient. Figure 18 depicts
this data structure.

References Used

Directory blocks

References Used

Data Slots N S

Data Slots N S

Data blocks

Data Slots N S

Data Slots N S

Figure 18: Directory of blocks.

We will now give more details about the concrete implementation of this
approach.

Directory

The directory data structure is a linked list of blocks. Each block has a
reference to the following one, or if it is the last one – NIL. The first block
must be always stored at a fixed position (usually at the first address of the
underlying storage).

As already said, each directory block contains references to BLOCKS
data blocks. Thus, besides using it as a means to quickly find a data block
with enough free space, we can also use the directory to abstract the physical
data block addresses. This will give us later the possibility to change the
actual block locations without affecting other components. So, how can we
implement this mapping between physical and logical block addresses? The
directory is a linked list of blocks, each containing BLOCKS references.
Therefore, we can enumerate each reference starting from 0. We can then
use this enumeration as a logical identifier of each data block.

We will now define the concrete methods which the directory data struc-
ture needs to implement (see figure 19).

33

<<interface>>

Directory

+insert(physicalAddr: long): long

+delete(logicalAddr: long)

+lookup(logicalAddr: long): long

+update(logicalAddr: long, inc: int)

+find(length: int): long

Figure 19: Directory interface definition.

The insert function registers the physical address of a newly created
data block and returns its logical address. In order to do this, the function
needs to find a free place in the arrays with references of each directory
block. Let us assume that the ith cell of the nth directory block is free.
Then the function writes in that cell the data block physical address and
returns i + n · BLOCKS as logical block address. If no free cell is found,
then we need to create a new directory block.

The delete function does the opposite: it removes the data block from
the directory. It goes to the directory block with index

⌊ logicalId
BLOCKS

⌋
and

marks the reference with index (logicalId mod BLOCKS) as empty. The
functions lookup and update function use the same logic, however, instead
of marking the reference as empty, the lookup function returns the reference
value, and the udpate function increments the corresponding used entry
with inc.

The last function is the find function which searches the directory for
a block with enough free space to store a record with length length. This
function needs to be called each time when we want to insert a new record.
Therefore, its performance determines the overall performance.

The simplest approach would be to traverse the whole directory from
the beginning each time the function is called. However, in many cases this
may be very slow. For example, let us consider the case when we create a
new database and we continuously add new records. In this case, it does not
make sense to start searching the directory from the beginning, because we
are sure that no deletes have been performed, and hence there are no empty
regions in the previous blocks. In order to be able to handle this case the
directory implementation should be able to store the last used data block
and start the find function from there. Further, we need to extend the
RecordStorage interface with a new method append, which should call the
find function without instructing it to start the search from the beginning
of the directory.

Another important optimization, which should be applied, is to main-
tain a cache with the addresses of all directory blocks in an array. This

34

is necessary, because, if we need to access the nth directory block in the
linked list, we need to read all previous n− 1 directory blocks. Caching the
block addresses will allow finding the address of the needed directory block
directly.

Data Blocks

The data blocks contain the actual records. Each data block can be regarded
as if split into two areas: one with the actual data and one with meta-data.
The meta-data area is usually stored at the end of the block and the data
area in the beginning of the block. Thus, both sections can grow until no
free space remains in the block.

The meta-data area contains the so called directory of slots – an array
of offsets from the beginning of the block, showing the start positions of the
records. The length of each record is stored in the first bytes of the record.
Figure 18 shows the structure of a data block. The field S shows the size
of the data area and N is the length of the slot array. A more detailed
description of the approach can be found in [RG00]. Here, we will only
present the methods which we need for a data block in order to implement
our record storage.

<<interface>>

DataBlock

+read(slot: int): byte[]

+write(slot: int, byte[] data): int

+delete(slot: int): int

+findEmptySlot(): int

Figure 20: Data block interface definition.

Figure 20 shows what methods we need. Most of them do not need
explanation. We should only note, that the methods write and delete return
the number of bytes which are needed to store, respectively freed, after the
operation. This is needed, since the number of used or freed bytes, is not the
same as the length of the record. First of all, the length of the record should
be stored, too. Second, it is not known if a new slot will be allocated/freed or
an existing one will be reused, i.e. if the slot directory will grow, respectively
shrink. Third, the slots may not be byte-aligned; for example if we assume
that a slot is 12 bits, then allocating a slot with odd index will grow the
array with only 1 byte, while allocating a slot with even index, with 2 bytes.
Figure 21 illustrates the example.

35

0
bytes

1 2 3 4

slot 0 slot 1

Figure 21: Slots which are not byte aligned (12 bits).

Putting It Together

Having defined the interfaces and their implementation, we are almost ready
to sketch our implementation of variable-length record storage. There two
more questions which remain to be answered: first we need to define the
size of each field in the data structures and second, we need to define the
structure of a record identifier.

To answer the first question we need to know the size of a block B and
the size of a block reference R. Then we can calculate the number of data
block references in a directory block n using the following formula:

B = R + n ·R + n · log2B
8

, hence

n =

⌊
8 · (B −R)

8 ·R + log2B

⌋
.

The meaning behind the first formula comes directly from the structure of
a directory block: a directory block with length B contains a reference with
length R to the next directory block, further n references to data blocks,
and finally, n values, each with length log2B/8, representing the number of
used bytes in each data block. For instance, if we assume that the B = 4096
and R = 5, then n = 629.

Similar reasoning can be used to determine the size of the slots in the
data blocks, as well as the size of S (the size of the data area) and N (the
number of slots). An important consideration for the size of a slot is to have
enough bits, so that every possible offset in the data block can be stored,
i.e. in most practical cases a slot would be at least log2B bits long. The
same is valid for the size of S.

The second problem which we should solve is what values should we use
as record identifiers. Our main consideration in this case is to efficiently
locate a record. Given how our proposed implementation works, it should
be sufficient to use the logical data block number for the high bits and the
slot number as the low bits of the record identifier.

Now, the methods of the RecordStorage interface can be readily imple-
mented. The read() method is simple: we need to extract the data block
logical address and the slot number from the record identifier. Then we need
to look up the logical address and find the actual physical address from the

36

directory. Finally, we need to read the data block and decode the record
data at the given slot.

Algorithm 5 Function read(rid)

1: function read(rid)
2: logicalAddr ← block(rid)
3: slot← slot(rid)
4: physicalAddr ← directory.lookup(blockNum)
5: dataBlock ← gotoDataBlock(physicalAddr)
6: record← dataBlock.read(slot)
7: return record
8: end function

The function append can be easily implemented, too. The only peculiar-
ity to note is that when searching for a block with enough space, we also
need to consider the number of bytes which we need for storing the length
of the record, as well as the the number of bytes which we need for storing
the record offset in the block.

Algorithm 6 Function append(record)

1: function append(record)
2: logicalAddr ← directory.find(rlen + |rlen|+ |slot|)
3: if logicalAddr = NIL then
4: physicalAddr ← newDataBlock()
5: logicalAddr ← directory.insert(physicalAddr)
6: else
7: physicalAddr ← directory.lookup(logicalAddr)
8: end if
9: dataBlock ← gotoDataBlock(physicalAddr)

10: slot← dataBlock.findEmptySlot()
11: used← dataBlock.write(slot, record)
12: directory.update(logicalAddr, used)
13: return rid(logicalAddr, slot)
14: end function

The implementation of the insert() function is the same as that of
append(). The only difference is that we need to instruct the directory
to start the search for data block with enough space from the beginning.

The implementation of the delete() method is very similar to the imple-
mentation of the read() method. The difference is that instead of reading
the record, we delete it from the data block. Additionally, if the block re-
mains empty after the deletion of the record, we need to delete it from the
directory. Otherwise, we need to decrease the number of used bytes for the
data block in the directory.

37

Algorithm 7 Function delete(rid)

1: function append(record)
2: logicalAddr ← block(rid)
3: slot← slot(rid)
4: physicalAddr ← directory.lookup(blockNum)
5: dataBlock ← gotoDataBlock(physicalAddr)
6: freed← dataBlock.delete(slot)
7: if freed = BLOCKSIZE then
8: directory.delete(logicalAddr)
9: else

10: directory.update(logicalAddr,−freed)
11: end if
12: end function

3.5 Storing Records Which Span Several Blocks

An important question, which have not been discussed yet, is how to store
records which are larger than a block. It is proposed in [RG00] to split a
record into chunks and store each chunk as a separate record together with
the rid of the next chunk (effectively storing a record a linked list of chunks).
While the idea is relatively simple, there are several practical issues which
will discuss.

The scheme described in [RG00] can be well implemented without chang-
ing the previously described implementation: we just need to add one more
level of abstraction which should take care to split large records into chunks.
However, when reading a large record, the implementation should be able
to differentiate between a normal record and a chunk of a record. Further,
our implementation automatically stores the length of a record, but this is
not necessary, since we know the length of each chunk. Finally, we don’t
need a slotted organization of the data blocks, since we know that only a
single chunk is stored in the block. Thus, it would be simpler to extend
the implementation to support larger-than-block records instead of adding
a new component on top of it.

First, we will introduce a new type of data block – a chunk block. The
difference to the normal data block is that it does not have a slot directory,
the size of the data area is always the size of the block, and when we store
a chunk in such a block we do not store its length.

Second, we add new methods for reading, writing, and deleting a chunked
record. A peculiarity of the write method is that it must store the chunks in
reverse order so that when we store a chunk we already have the rid of the
next one. The last chunk (which, thus, will be stored first) should be stored
as normal record, because it’s length is less than the length of a block and
in this way we also mark the end of the linked list. The rid of the whole

38

record is rid of the first chunk (which is stored last), which allows reading
the chunks in the correct order.

Aside from these special points, extending the record storage to support
records larger than a block is relatively straightforward – the DataBlock
interface should be extended to support chunks and the Directory interface
remains unchanged.

3.6 Performance Measurements

We will now present some performance measurements in order to test the
viability of the proposed implementation. We will compare the results to
another implementation, which is also able to store variable-length records.
This implementation is however very simple: it does not re-use space which
remains empty after a record is deleted. Instead, it simply appends each new
record at the end of the used file. However, this implementation provides
the highest possible performance for all operations since it does not have
any overhead from meta-data structures.

Both implementations use the same clock-based buffer manager with 16
pages each with size 4096 bytes.

0 0.5 1 1.5 2

·107

0

100

200

300

number of records

ti
m

e
(i

n
m

s)

Figure 22: Performance of append() compared to a trivial implementa-
tion : appending 1000000 records.

In figure 22 each point represents the time needed by each implementa-
tion to append 1000000 records with length 20 bytes starting with an empty
file. The linear complexity of both algorithms can be seen well. In addition,
although our implementation has the overhead of managing meta-data, it is
roughly 1.5 times slower than the trivial implementation.

Another case in which the trivial implementation is expected to be ex-
tremely fast is accessing a record by rid. It uses as a rid the offset from the

39

beginning of the file where the record is stored, so there is no overhead. In
contrast, the proposed implementation needs to first locate the data block
address in the directory, read the data block, and only then decode the
record from the block.

0 0.5 1 1.5 2

·107

0

20

40

60

80

number of records

ti
m

e
(i

n
m

s)

Figure 23: Performance of read() compared to a trivial implementation
: reading 10000 random records.

Figure 23 shows that both implementations use constant time regardless
of the size of the file. However, the implementation which employs the
directory structure, is about 2 times slower than the trivial implementation.
This is attributed mainly to the fact that in order to read a record it needs
to read 2 blocks, while the trivial implementation needs only 1.

3.7 Future Work

Optimizing the Directory

As already mentioned, the most performance critical function of the variable-
record storage mechanism is the search for a data block where a record with
a given length can be saved.

The data structure which we use for the directory is very simple – a
linked list and we need to iterate sequentially through the directory blocks
when we search for a free data block. The problem with this approach is that
when we insert a sequence of records, we need to use the append function
in order to not always start the search from the beginning of the directory.
However, since the records are not sorted by their length, this approach does
not guarantee us that if a space with the necessary length exists, it will be
used.

40

One possible solution is to provide additional insert method which inserts
a set of records. This method could sort the records according to their length
and only then start the insert.

Another possible optimization provides the delete method. When we
delete a lot of records, it well can be that they are located in different data
blocks which are referenced by different directory blocks. We can again
provide a new delete method which has as input a set of rid’s. These rid’s
can be grouped by the logical block address they have and only then perform
the actual delete. Further, the DataBlock interface can provide a “bulk”
delete method, too. The advantage, besides only one function call, is that
we need for the update of the block only one I/O operation.

Further optimizations can be applied by changing the data structure,
which is used by the directory. For example, we could maintain an in-
memory index by the free space of the first n data blocks. When we want
to insert a record with length l, we search the index and it returns the block
which has enough space to store the record, and all other blocks either don’t
have enough space, or the space they have is larger than the space in the
returned block.

It should be noted, that the goal of these optimizations is not to fill
the empty spaces in the data blocks with new records in an optimal way.
Finding an optimal distribution of the records across the data blocks is
equivalent to the bin packing problem, which is a combinatorial NP-hard
problem [JDU+74] and therefore, either requires an excessive amount of time
to find an optimal solution, or use an approximation.

Whatever data structure we use, we must always take care that accessing
by a rid should be as fast as possible, and only then try to optimize the
update operations. This is due to the fact, that in general, read operations
in a database are much more frequent than updates.

Concurrent Access

Concurrent access to the data is another important feature, which has not
been considered. If we bear in mind that the described mechanism works
with a single file, then we can allow the execution of many parallel read() ex-
ecutions, but only a single write operation (insert(), append(), or delete()).
This corresponds to implementing the solution of the well-known reader-
writer problem.

On the other hand, if the storage mechanism can distribute records across
several files, then it may be possible to run updating operations, which affect
different files, in parallel.

41

Storing Index Id-Lists

An important application of the variable-record storage is persisting the id-
lists of an inverted index. An index id-list is a list containing identifiers of
records, which have the same index key. Naturally, these lists can be with
different length, can be modified, deleted, or new ones can be inserted. Thus,
they can be treated as records with variable length. A detailed description
of such storage mechanism is described in [ZMSD93]. It is very similar to the
approach proposed in the current work. However, this solution is not optimal
with respect to update operations, given the following characteristics of the
id-lists:

• First, in contrast to a document retrieval system, in an XML database
not only the documents are indexed but also the separate attribute
values and text nodes. This increases significantly the average size
of an id-list, especially when a whole collection of XML documents
is indexed, and even when compressed, the probability that an id-list
spans several blocks increases.

• Second, as described in [WMB99], the id-lists contain the id-values
in a compressed form, usually by first sorting the id-values, and then
calculating the differences between each of them, as shown in figure
24.

id-values: 5 8 13 14 15 20 23 27 30 31 40 42

differences: 5 3 5 1 1 5 3 4 3 1 9 2

id-values: 5 8 13 14 15 20 22 23 27 30 31 40 42

differences: 5 3 5 1 1 5 2 1 4 3 1 9 2

insert id=22

Figure 24: Storing id-lists in compressed form.

So, how do these two factors influence the performance of the update oper-
ation? In order to delete or insert a new id-value, we need to first find the
position where the corresponding id-value is located or should be inserted.
However, since we store only the differences, we cannot apply binary search,
even though the values represent a sorted array. Thus, we need to scan the
list from the beginning until we find the correct place. For long id-lists,
which span several blocks, this might be very expensive, especially given the
fact, that most insert operations will actually need to append the id-value
to the list, since it is newly generated, and hence bigger than any other. An
exception is replace value of node, where an existing id-value may move
from one id-list to another.

42

In order to optimize the update of long id-lists, we may store some
additional data about the list. For example, if the list spans several blocks,
it means that it is split into chunks. Therefore, if we store the first actual
id-value in each chunk together with the address of the chunk, we no longer
need to scan the id-list from its beginning to locate a given value. Further,
if we need to append a new id-value, we always know the address of the
block which contains the end of the list. Figure 25 illustrates the idea using
the example from figure 24. This approach, however, needs to be further
specified and prototyped.

5

20

40

3 5 1 1

3 4 3 1

2

Figure 25: Storing id-lists which span several blocks.

3.8 Summary

In this section we described some problems concerning variable-length record
storage and their possible solutions. Since they concern the lower levels of
a database management system, they are common to both native XML and
relational databases. We showed also that most of the principles for storing
variable-length records can be applied to native XML databases, too. How-
ever, there are some difficulties and specifics in the implementation, which
need to be dealt with. Additionally, the data structures and caching applica-
tion need to be carefully designed in order to achieve adequate performance.

43

4 Index Updates

4.1 Introduction

In the previous two sections we described algorithms and data structures,
which allow efficient execution in native XML databases not only of read
but also of update operations. In the current section we will concentrate our
attention on implementing incremental updates in various index structures
used in native XML databases.

Similar to relational databases, native XML databases use indexes in
order to optimize queries. For example, indexes with all text nodes and all
attribute values can be created and then XPath predicates can be evaluated
using the corresponding index. These match closely the standard column
indexes found in most relation databases. Further, XQuery and XPath
support full-text queries, which can be optimized by using special full-text
indexes. These indexes are well-known from the relational databases, too.

In contrast to data in relational databases, however, native XML data-
bases deal with semi-structured data, i.e. besides containing data, XML
documents define themselves the structure of the data. This means that
XML documents do not need to have a specific, predefined structure in or-
der to be processed. However, this flexibility can be also a disadvantage:
first, it is difficult for users to create useful queries without knowing the
structure of the data, and second, it is difficult for the DBMS to efficiently
execute queries. This is why a special type of indexes have been devised,
which represent the structure of the data. These indexes are called path
summaries[BCM05] or DataGuides[GW97]. We will use the term path sum-
mary, since it is more wide-spread in the XML community.

In the following sections will present some specifics regarding index up-
dates in native XML databases, as well as their practical application in the
open source native XML database system BaseX.

4.2 Text and Attribute Values Index

Introduction

We will begin with the most well-known type of index – the value index.
XML documents contain their data in the text nodes and attribute values
(processing instructions and comments can be processed, if needed, as text
nodes). These values usually participate in query predicates with compar-
ison operators such as =, <, >, etc. Such operators can be evaluated very
efficiently using a standard inverted index, which uses a tree structure for
the keys and id lists.

Maintaining such index during database updates is also relatively stan-
dard. Updating the id lists has been discussed in the previous section and
there are numerous tree data structures which support search and update

44

operations with logarithmic complexity. The most widely used data struc-
ture is the B+-tree and its variants [Com79].

These standard data structures can be used for indexing text nodes and
attribute values. However, executing update operations causes some addi-
tional effects, which need to be handled by implementations. As already
mentioned in the Section 2 ID-PRE Mapping, indexes need to use stable
node identifiers. Therefore, in order to return nodes in document order
when searching for a key, we need to translate the id values to pre values
first, i.e. we need to use an ID-PRE Map.

Further, when performing an insert operation, many new records are
inserted – some represent already existing keys in the index, some are com-
pletely new. In both cases delaying the insert of new entries in the index
and caching them can bring performance improvements, because we will
be able to add several new id values with a single operation to an id list
corresponding to a given key.

Similar reasoning can be applied when deleting nodes – caching the id
values to be deleted means less update operations in the index and its id
lists.

Value Indexes in BaseX

Further problems can be identified when a concrete database implementation
is considered. The native XML database system BaseX uses as an index
structure a simple array sorted by the index keys. Besides being simple to
implement, this approach provides a very good performance for read-only
databases. However, updating the index is not as efficient as it would be
with, for example, a B+-tree. Nonetheless, support for incremental updates
exists and reasonable speed is achieved thanks to the optimization techniques
presented below.

The fact that we have to deal with a sorted list of keys means that when
inserting new keys, the list need to be resized. Therefore, we need to shift
all bigger keys to the right. Here we can again make use of buffering the
inserted records. Additionally, we sort the inserted keys and we search the
index in order to identify which keys are new. The advantage we gain from
these pre-processing steps is that we need to perform the shifting of existing
keys only once. Let us consider the example in figure 26.

We need to insert 7 new records with keys a, c, f, and g. We have sorted
and grouped the records in the pre-processing step and we have identified
that the keys c, f, and g do not exist in the index. This means that we insert
3 new keys. Then starting from the end of both key lists, we compare the
keys pair-wise – one key from the index and one key from the new ones.
Since h is bigger than g, we move it 3 positions to the right. Then we insert
keys f and g with their corresponding id lists. Then we move d and e 1
position to the right, and so on until all new records have been inserted. If

45

a b d e h

4

7

1 5 2

3

6

8

a c f g

14 10

12

9 11

13

15

Figure 26: Inserting new records in BaseX value index.

the two keys are equal, such as the case with a, then we insert the new id
values in the existing id list. The result is shown on figure 27.

a b c d e f g h

4

7

14

1 10

12

5 2

3

6

9 11

13

15

8

Figure 27: Result of inserting new records in BaseX value index.

If there are no new keys, sorting the input keys can nonetheless bring
advantage, since we can more efficiently perform the binary search for each
subsequent key, by limiting the search to the position of the previously found
match.

Similar approach can be used when implementing the delete operation.
We need to collect all records which are being deleted and sort their keys.
This time we start traversing the list with deleted keys from the beginning.
We find the first key from the input list in the index and delete the corre-
sponding id values from the id list. If the id list remains empty, then we
need to delete the key. This means that all subsequent records, which are
smaller than the next deleted key, should be shifted to the left. If not, then
we perform again binary search for the next input key and so on until all
input keys are processed.

Performance of Value Indexes in BaseX

An interesting question is what the performance impact on database updates
is when using these data structures as indexes. Figure 28 shows the results
of a performance test conducted with a relatively big database in which the
value index contains around 1.6 million records and around 508 thousand
keys.

46

Insert Delete

0

1,000

2,000

3,000
2,925.62

90.55

3,269.63
2,997.59

T
im

e
(i

n
m

s)

No Index Update With Index Update

Figure 28: Value index update performance in BaseX.

The measurement results in the case of insert show clearly that, com-
pared to the overall performance, updating the index is not significant. How-
ever, the difference for delete is huge. The reason for this is that BaseX
executes very efficiently delete operations by first removing records only
from its main data structure (which is very fast since all records are stored
sequentially in document order) and then updating the distance values of
all ancestors and following siblings of the deleted node. This advantage is
lost when the indexes need to be updated, because we need to analyze all
deleted nodes and collect the values of all text and attribute nodes. After
that we need to update the index itself. This difference in the performance,
although not that huge, should be expected regardless of the used data struc-
ture. However, the performance impact may be worth it, when we strive to
optimize read-only queries, which profit from value indexes.

4.3 Path Summary

Introduction

The next index type, which we will analyze, is the path summary. As already
mentioned, a path summary represents the structure of an XML document.
Intuitively it can be defined as the tree of the XML document, in which,
however, all nodes from a given level are represented by a single node, if all
of the following conditions are true:

• they have a common parent in the path summary

• they are from the same type (i.e. element, attribute, text node, etc.)

47

• they have the same name (in the case of element and attribute).

An example is given by figure 29.

<r>

text

<a>text

<a>pre<i/>post

<a>

<c>text</c>

</r>

(a) XML document

sample.xml

r

a

@x=1 text

b

a

text

a

pre i post

a

@x=2

b

a

c

text

(b) XML document tree

doc()

r

a

@x

{1,2}
text()

{"text"}

b

a

text()

"post".."text"

i c

text()

{"text"}

(c) Path summary

Figure 29: Path summary of an XML document.

This definition corresponds to the definition of strong DataGuide from
[GW97]. However, DataGuides are more general than the path summary
we present here, because they are designed for graph-structured databases.
While XML documents are trees, references between nodes can be created
using ID/IDREFs, which makes essentially an XML document a graph. We
will, however, ignore this possibility, which will simplify significantly the
used algorithms.

Statistics

Besides defining the structure of an XML document, a path summary may
also contain additional information about the nodes, which may be useful
to the query optimizer. A typical example is the number of nodes, which
are reachable with a given path. This is analogous to the number of rows
in a table of a relational database. If we continue further with this analogy,
we can also store data about the values (text nodes and attribute values).
For instance, the attribute /r/a/@x from figure 29 has only integer values
and they are only 1 and 2. On the other hand, the node /r/b/a/text()

contains text values the smallest one of which is "post" and the biggest
"text".

In contrast to relational databases, XML documents may not have a
defined schema. This means that the @x attribute may as well have a text
value. Therefore, as a meta-information, we can also store the type of data
deduced from the existing values in the database.

Storing further meta-information is of course possible, but, beside the
node count, we will limit our analysis to the following categories for each
value (i.e. text node or attribute value):

• data type: specific type such as numeric, date, etc, or general text

48

• enumerating all distinct values together with their distribution (if the
number of distinct values is smaller than a given boundary), or storing
only the minimal and maximal value, if there too many distinct values.

Updating Path Summary

Updating strong DataGuides has been described in detail in [GW97]. How-
ever, as already said, the algorithms needed in the case of path summaries
are simpler. More specifically, we need to consider only the cases, in which
a new sub-tree is inserted or an existing one is deleted. The only operation
from the XQuery Update Facility, which may cause complications, is rename
node. However, it can be implemented by first deleting a the node and then
re-inserting it with the new name.

We will now describe how a given path summary can be updated. We
will begin with inserting a new tree at a given position, using figure 30 as
an example.

sample.xml

r

a

@x=1 text

b

a

text

a

pre i post

a

@x=2

a

@x=n d text

b

a

c

text

(a) XML document tree

doc()

r

a

@x

"1".."n"

text()

{"text"}

d

b

a

text()

"post".."text"

i c

text()

{"text"}

(b) Path summary

Figure 30: insert node <d/>text after /r/a[@x=2].

The path summary insert procedure in this case runs as follows. First,
we identify the parent of the sub-tree in the path summary using the target
node from the insert query. In our case this the node with label r. Then
we check if there is a child node of r with label a. Since this is the case,
we increment the number of XML nodes represented by this path summary
node. We continue further with the attribute @x="n". In the path summary,
a node @x exists which in addition shows that all corresponding attribute
values contain only one of the numbers 1 and 2. The new attribute value is,
however, "n", which means that we have to change the type from numeric
to text. Further, if we assume that the minimal number of distinct values
which we can store is only 2, then we are not able to store all 3 distinct texts.
Thus, we need to store only the minimal and maximal values for these node.

The rest of the new XML nodes can be recorded in the path summary
analogously. This procedure is almost the same as the procedure used by

49

building the path summary from scratch. The only difference is that we
need to locate the parent node first.

The important conclusion which we can make, concerning statistics about
values, is that when a new node is being added, the constraints described
by the statistic values will either remain the same, or will be relaxed (which
is natural since the set of described elements is larger).

sample.xml

r

a

@x=1 text

b

a

text

a

pre i post

a

@x=2

a

@x=n d text

b

a

c

text

(a) XML document tree

doc()

r

a

@x

"1".."n"

text()

{"text"}

d

b

a

text()

"post".."text"

i c

text()

{"text"}

(b) Path summary

Figure 31: delete node /r/a/@x[.="n"].

Let us now consider the delete operation delete node /r/a/@x[.="n"]

applied to the XML tree in figure 31. After executing this operation, the
nodes /r/a/@x will again have only the numeric values 1 and 2. However,
in order to determine that, we need to check all nodes to assert that this
is really the case – a price that we may not be willing to pay, because it
can make the update operation very slow. Thus, even though the delete
operation decreases the set of nodes, we cannot narrow the constraints and
the path summary remains unchanged.

Such inaccuracies need to be reflected in the path summary with a flag,
which shows whether the statistics represent precisely the data, or not. This
flag can be global, i.e. for the whole path summary. However, an improve-
ment would be to store such flag in each node in the path summary. This
will allow us to take full advantage of statistics, which remain exact after
an update operation.

4.4 Full Text Index

One type of indexes, which we have not considered, are full-text indexes.
Full-text indexes are used in the field of information retrieval. Usually they
are inverted indexes, which, in contrast to the above discussed text and at-
tribute value index, use as keys not the whole text value, but rather the
single tokens of which it consists. Full-text indexes can be rather complex,
first because they contain a lot of data, and second because there are numer-
ous query options, which they may be able to accelerate. Examples of such
options are stemming, scoring, filtering by language, boolean expressions,

50

etc. This is why implementing an efficient full-text index is hard and even
harder is implementing efficient updates.

Full text indexes can be implemented as inverted indexes storing the
tokens in a balanced tree structure and the id lists as variable-length records.
However, in addition to the id values, the positions of the tokens in each
text node can be saved, too. This means, that for each indexed token, we
need to store the id values of each text node, where the token occurs, as well
as the positions of the token in each text node. Thus, an id list for a key is
actually a list of records, where each record has a text node id and a list of
positions. Figure 32 describes the structure of such a list.

key1

key2

key3

(id1 : 2, 10, 11) (id3 : 3, 4)

(id2 : 7, 10, 12)

(id3 : 1, 6) (id4 : 3, 7, 8) (id5 : 1, 4)

Figure 32: Storing id values and positions in a full-text index.

Besides complicating the storage layout, storing the position increases
significantly the overall size of the index. Therefore, it is needed to compress
position values similar to the approach described in section 3.7. Further, as
also described in that same section, in order to improve the performance
when updating large lists, we need to again store some of the id values
uncompressed form together with references to the chunks from which the
list consists. Thus, we can quickly identify the chunk we need and update
only it. Figure 33 shows that using the example from figure 32.

key1

key2

key3

(id1 : 2, 8, 1) (cid3 : 3, 1)

(id2 : 7, 3, 2)

id3

id5

(id3 : 1, 5) (cid4 : 3, 4, 1)

(id5 : 1, 3)

Figure 33: Storing id values and positions in a full-text index, so that up-
dates are more efficient.

We will now consider the concrete full-text index implementation of Ba-
seX. Its full-text index first groups all tokens by their length and then creates

51

a separate sub-index for each group (figure 34 depicts the index structure).

lengths

tokens tokens tokens tokens

id lists id lists id lists id lists

Figure 34: Full-text index structure in BaseX.

This index structure allows efficient evaluation of wildcard searches as
well as queries with approximate string matching based on edit distance,
such as the Levenshtein distance. However it is tailored to perform efficiently
only in read-only databases, because it uses sorted arrays with binary search.
This can be improved by using a B+-tree, or applying techniques similar
to the ones demonstrated in section 4.2, where we have described how the
BaseX value index can be updated. Implementing a prototype of such an
index is out of scope of this thesis.

4.5 Index Updates and the Database System

Implementing index structures that allow efficient updates is not the only
factor that determines the overall performance of the system. An important
question is how to integrate such components with the rest of the system.
We saw that each index type uses different types of nodes from the XML
document. This means that the best alternative is to use an event based
mechanism, which processes inserted or deleted nodes and notifies registered
listeners. This approach allows asynchronous index updates, if sufficient
system resources are available.

When inserting new nodes, BaseX uses a mechanism similar to the event-
based one (the delete operation does not traverse the deleted nodes, when
index updates are not needed). The current index update mechanism is
not executed asynchronously by the main update process, because the index
update relies on the fact that all inserted or deleted nodes are first buffered.
When inserting or deleting huge number of nodes, the buffer may consume
a considerable amount of the system memory. This is why, its size needs to
be limited and several index update operations need to be executed per one
database operation.

52

4.6 Future Work

Partial Indexes

Partial indexes are indexes which contain only part of the whole database
defined using an expression (they may be considered analogous to material-
ized views from relational databases). Updating a partial index is difficult,
because inserted or deleted nodes need to be checked for nodes, which cor-
respond to the partial index condition. Efficiently performing such updates
is subject to future research.

Typed Indexes

As explained earlier, if not constrained to a given schema, XML documents
are not typed. However, in many cases some nodes always contain only
values of a certain type. In this case a partial index can be defined on these
nodes, however, comparing them not as texts, but as typed values, either
provided by the user or guessed from the path summary. On the other hand,
when a new node is added to the index, but has different type than the rest
of the index keys, then the index becomes invalid. The simplest solution is
to discard the index. Another more useful solution would be to maintain a
second index, ordered by the newly introduced type. Thus, the overhead of
indexes will be twice as much, but we can still benefit from the old typed
index. These and other possible solutions need to be further developed.

Coupling Value Indexes with Path Summary

Another interesting topic is coupling the value index with the path summary.
This means that for each id value stored in the value index representing a
text node or an attribute value, additionally a reference to the corresponding
path summary node is stored. The motivation behind this proposal is that
queries such as

/descendant-or-self::*/*:x[text() = "y"]

can be re-written to

db:text("y")/parent::*:x[parent::*],

where the function db:text() performs a look up in the value index and
returns all matching text nodes. The rest of the path expression can be
evaluated using the path summary, if the nodes returned from the value
index contain references to their corresponding nodes in the path summary.
Thus, such queries, which occur quite often, can be evaluated by using only
index access and without accessing the main data structure.

This optimization comes, however, to a price. First, the size of value
index increases, because the path summary references need to be stored next

53

to each id value. Second, when inserting a new record in the value index,
the corresponding path summary reference needs to be already known. This
means that the path summary should be always updated before the value
index, and this further means that both updates cannot be executed in
parallel.

4.7 Summary

In this section we have presented several approaches for updating various
kinds of indexes in native XML databases. First, we have described an index
on all text nodes and attribute values, which uses a traditional approach,
and we have shown how an update mechanism can be implemented, even
though the used data structures are not optimal with respect to updates.
Second, we have presented how structural and meta-data can be updated,
when stored in a path summary. Finally, we have discussed some specifics
related to updating full-text indexes and how index updates are integrated
into the XML database management system.

54

5 Conclusion

Several storage data structures have been presented in this thesis. Each
of them targets a specific problem related to data updates in native XML
databases.

The first such structure is the ID-PRE Map, which allows efficiently find-
ing the pre position of a node given its unique id value in an XML database
affected by updates. The algorithm is described both intuitively and for-
mally, so that it can be easily comprehended and provide the necessary
basis for formal proof of its correctness. The performance of the approach
is good even though there are many optimization possibilities in the imple-
mentation. This implementation is integrated into the open source database
system BaseX and although still experimental, the first real case results are
promising.

Another topic discussed in this thesis is storing variable-length records.
Although there are numerous publications on this problem, implementing
such mechanism is not easy and straightforward. Special attention has been
paid to optimizations, which allow performance of the most important op-
erations comparable to the performance of a straightforward but very fast
implementation.

The first two mechanisms are an important prerequisite for implement-
ing index updates. In the last part of this thesis, approaches for updating
three kinds of indexes have been presented. For traditional inverted indexes,
such as the text and attribute value indexes and the full-text indexes, an
important component, beside the key data structure, is the mechanism for
storing the record references (the so-called id lists). We have described how
the mechanism for storing variable-length records can be used to store such
records and additionally, improvements to the standard solutions have been
proposed.

The main goal in each case has been to achieve maximum performance
when executing read operations and at the same time provide reasonably
fast updates. While there is still a lot of room for optimizations, most of
the approaches have been implemented or will be implemented in the XML
database system BaseX, since their usefulness can be fully proved only by
their practical application.

55

References

[BCM05] Attila Barta, Mariano P. Consens, and Alberto O. Mendelzon.
Benefits of Path Summaries in an XML Query Optimizer Sup-
porting Multiple Access Methods. In Klemens Böhm, Chris-
tian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke
Larson, and Beng Chin Ooi, editors, VLDB, pages 133–144.
ACM, 2005.

[BGvK+06] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rit-
tinger, and J. Teubner. MonetDB/XQuery: A Fast XQuery
Processor Powered By A Relational Engine. In Proceedings of
ACM SIGMOD International Conference on Management of
Data 2006. ACM, 2006.

[Com79] Douglas Comer. The Ubiquitous B-Tree. ACM Comput. Surv.,
11(2):121–137, 1979.

[FGK06] Andrey Fomichev, Maxim Grinev, and Sergei D. Kuznetsov.
Sedna: A Native XML DBMS. In Jiŕı Wiedermann, Gerard Tel,
Jaroslav Pokorný, Mária Bieliková, and Julius Stuller, editors,
SOFSEM, volume 3831 of Lecture Notes in Computer Science,
pages 272–281. Springer, 2006.

[FHK+02] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido
Moerkotte, Julia Neumann, Robert Schiele, and Till Westmann.
Anatomy of a native XML base management system. VLDB
J., 11(4):292–314, 2002.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: En-
abling Query Formulation and Optimization in Semistructured
Databases. In VLDB, pages 436–445, 1997.

[JDU+74] David S. Johnson, Alan J. Demers, Jeffrey D. Ullman,
M. R. Garey, and Ronald L. Graham. Worst-Case Per-
formance Bounds for Simple One-Dimensional Packing Algo-
rithms. SIAM J. Comput., 3(4):299–325, 1974.

[RG00] Raghu Ramakrishnan and Johannes Gehrke. Database Man-
agement Systems. McGraw-Hill, second edition, 2000.

[WMB99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and Images.
Morgan Kaufmann, San Francisco, CA, second edition, 1999.

[ZMSD93] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. Stor-
age Management for Files of Dynamic Records. In Australian
Database Conference, pages 26–38, 1993.

56

	Introduction
	Motivation
	Contribution
	Overview

	ID-PRE Mapping
	Introduction
	Preliminaries
	Goals
	Intuitive Description
	Formal Description
	Correctness
	Implementation and Performance
	Related Work
	Future Work
	Summary

	Variable-Length Record Storage
	Introduction
	Requirements
	Block Management
	Record Storage
	Storing Records Which Span Several Blocks
	Performance Measurements
	Future Work
	Summary

	Index Updates
	Introduction
	Text and Attribute Values Index
	Path Summary
	Full Text Index
	Index Updates and the Database System
	Future Work
	Summary

	Conclusion

