
Input and Output with XQuery and XML
Databases

Rositsa Shadura

Master Thesis in fulfillment of the requirements for the degree of
Master of Science (M.Sc.)

Submitted to the Department of Computer and Information Science at the
University of Konstanz

1st Referee: Prof. Dr. Marc H. Scholl
2nd Referee: Prof. Dr. Marcel Waldvogel
Supervisor: Dr. Christian Grün

Abstract

XML and XQuery provide a convenient way to model, store, retrieve and process data.
As a result, XML databases have become more and more popular in recent years. Con-
sequently, their usage scenarios have gone far beyond handling XML exclusively. This
thesis focuses on the challenges which emerge from unifying the input and output pro-
cessing of data in XML databases. Based on the analysis of use cases and existing solu-
tions, we define several requirements which shall be met for generalized data processing.
Following those we introduce a generic framework, which can serve as a blueprint when
designing the input and output data flow in an XML database. Furthermore, we propose
a solution how this framework can be applied in an existing open source XML database,
named BaseX, in order to improve its current approach of data processing.

Zusammenfassung

Die flexible und standardbasierte Modellierung, Speicherung, Abfrage und Verarbeitung
von semistrukturierten Daten sind die häufigsten Beweggründe für den Einsatz von XML
Technologien. Stetig wachsende Datenmengen steigern dabei nicht nur die Popularität
von XML Datenbanken, sondern stellen neue Voraussetzungen für die Implementierun-
gen: viele Anwendungen erfordern mehr als nur die Speicherung von Daten die ori-
ginär in XML vorliegen. Diese Arbeit untersucht die Herausforderungen bei der Um-
setzung von einheitlichen Ein- und Ausgabeschnittstellen in XML Datenbanken. Nach
einer Analyse bestehender Implementierungen und verschiedener Anwendungsszenar-
ien stellen wir Anforderungen an Im- und Exportschnittstellen fest. Basierend auf diesen
Überlegungen definieren wir ein generisches Framework zur Implementierung von Ein-
und Ausgabe in XML Datenbanken. Schließlich stellen wir aus, wie man das Framework
in BaseX, einem Open Source XML Datenbankmanagementsystem, umsetzen kann.

Acknowledgements

First of all, I would like to thank Prof. Dr. Marc H. Scholl and Prof. Dr. Marcel Waldvogel
for being my referees and giving me the opportunity to work on this topic.

I am truly grateful to Dr. Christian Grün for advising me not only on the writing of
this thesis but throughout the whole process of my studies at the University of Konstanz.
I think that being part of the BaseX team is great. Thank you!

Special thanks I owe to Alexander Holupirek, Dimitar Popov, Leonard Wörteler, Lukas
Kircher and Michael Seiferle for the numerous discussions we had around BaseX and for
being such good friends!

Last but not least, I want to thank my family for the understanding and support they
have always given me.

ii

Contents

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Overview . 2

2. Use Cases 3
2.1. Actors . 3
2.2. Storing and querying document-centric documents 4
2.3. Application Development . 5
2.4. Extending the Input and Output Functionality 5

3. Existing Solutions 7
3.1. Qizx . 7
3.2. eXist-db . 9
3.3. MarkLogic . 11
3.4. Zorba . 12
3.5. BaseX . 13
3.6. Conclusion . 14

4. Generic Architecture for Input and Output 15
4.1. Requirements . 15
4.2. Architecture . 16

4.2.1. Data Flow . 16
4.2.2. Input . 18
4.2.3. Output . 28

4.3. Usage . 32
4.3.1. Extending the Input and Output Functionality 32
4.3.2. Application Development . 35
4.3.3. Input and Output through a User Interface 40

4.4. Conclusion . 41

5. BaseX: Improving the Input and Output 42
5.1. Preliminaries . 42

5.1.1. Overview . 42
5.1.2. Storage and XDM . 43

5.2. Current Implementation . 44
5.2.1. Input . 44

iii

Contents

5.2.2. Output . 49
5.2.3. Options . 50

5.3. Improvement . 52
5.3.1. Input and Output Management . 52
5.3.2. Content and Metadata . 57
5.3.3. Input . 60
5.3.4. Output . 64

5.4. Conclusion . 68

6. Future Work 69
6.1. Streamable Data Processing . 69
6.2. Relational Databases . 70

7. Conclusion 71

A. Appendix 76

iv

1. Introduction

1.1. Motivation

Simple, general and usable over the Internet – these were the main goals the W3C
working group set while designing the first XML specification back in 1998. Since then,
XML has proven undoubtedly to possess these features but what is more significant –
made its way from a widely accepted data exchange format to the world of databases –
as a slowly but triumphantly emerging database format.
Why XML databases when there are the good old known relational databases? Well, if
we look around, we can observe that actually quite a small portion of the existing data
can be represented directly in rows and columns. The majority of it is unstructured and
unformed; thus difficult to put into a regular “shape“. What XML gives is flexibility, self-
description, schema freedom – qualities which make it the better choice for storing such
data.
However, what we care about at the end of the day is not how our data is represented
or stored on the disk but the information that stays behind it. We need to do something
with it, process it, change it, manipulate it. When XML is our data format, XQuery is our
friend in need. From a language designed for querying XML, in the last few years it has
evolved into a very powerful programming language. This progress XQuery owes to its
processing model[BCF+], which specifies that XQuery expressions operate on instances
of the XDM data model[XDM] and such instances can be generated from any kind of
data source. Thanks to this flexibility, it is able to work not only with XML data but with
any kind of data. Furthermore, XQuery is constantly extended with additional features
which go beyond XML query processing[BBB+09].
All these aspects make the usage of XML databases and XQuery processors in various
data processing applications more and more attractive. This adds a whole new set of
requirements to them such as: support of different ways to access the stored data, ability
to work with heterogeneous data sources, which may provide also non-XML data, user-
friendly interfaces to interact with the database and processor. The fulfillment of these
needs raises questions about the input and output with XQuery and XML databases –
how shall they be organized; what is the best way to implement them; what kind of
ways do exist to store both XML and non-XML data. The answers to these questions stay
in the focus of this thesis.

1

1.2. Overview

1.2. Overview

This master thesis is organized as follows: in Chapter 2 we define three major use cases
for input and output in an XML database along with the actors associated with them.
Chapter 3 analyzes several existing XML databases and XQuery processors with respect
to the input and output formats they support and the data channels they provide. Chap-
ter 4 presents the central work of the thesis – a generic framework for input and output
of data in an XML database. Chapter 5 describes how this framework can be integrated
into BaseX and especially how data processing will profit from this foundation in the
future. Chapter 6 discusses some possible enhancements for the proposed framework.
Finally, Chapter 7 concludes the thesis.

2

2. Use Cases

The foundation of every good software solution is a detailed analysis of the use cases in
which it can participate. Such an analysis always gives a convenient overview of who
and what will interact with the system and in which kind of way.
The topic about input and output with XQuery and XML databases sounds quite a broad
one and this is why it would be useful to start with discussing several use cases and
the requirements associated with each. These will serve as guidelines for finding an
appropriate solution for input and output architecture.

2.1. Actors

We start by defining three main types of users who may interact with an XML database:

• Regular User
This actor usually communicates with the system through some kind of user inter-
face – it can be a graphical one or just a command line. He/she does not need to
be familiar with the architecture and implementation of the system as well as to
be acquainted with XQuery and XML. Their everyday interaction with the database
includes adding, deleting, searching and eventually modifying documents.

• Application Developer
This actor uses the system for the same purposes as the regular user but the way
he/she communicates with it differs. In this case the actor develops applications
which interact with the XML database or XQuery processor through APIs provided
by the development team or directly through XQuery. He/she is familiar with XML
and XQuery though in-depth knowledge of the system’s architecture and imple-
mentation is not needed.

• XML database developer
This actor is part of the team implementing the XML database and XQuery pro-
cessor. He/she is acquainted in details regarding what goes on behind the scenes.
Their tasks include the development of new channels for input and output (new
APIs for example) as well as adding support for new data sources. This actor is not

3

2.2. Storing and querying document-centric documents

Figure 2.1.: Use Case Diagram

directly involved in the input and output of data in the system but their role is im-
portant because it determines the complexity of the whole system and influences
the way the other two actors communicate with it.

Having these three types of XML database users we can define three major use cases and
the corresponding requirements for them. They are illustrated in the following three
sections.

2.2. Storing and querying document-centric documents

This is probably the most popular use case for XML databases. Two fields in which it
is often put into practice are publishing and content management. A detailed list with
examples from the real world can be found in [Boua].
Document-centric documents are (usually) documents that are designed for human con-
sumption. Examples are books, email, advertisements, and almost any hand-written
XHTML document. They are commonly written by hand in XML or some other format,
such as RTF, PDF, or SGML.[Boub] This is why one of the major requirements to an XML
database in order to be applicable in this use case is to support also non-XML formats
both as input and as output. This means that a user shall be able to add documents in
various formats to his/her database and retrieve them in the same or even other format.
Furthermore, this shall happen transparently meaning that he/she must not take care for

4

2.3. Application Development

any transformations or conversions. Another requirement, which comes from the fact
that the common actors in this use case are regular users, is the presence of a convenient
user interface to interact with the system.

2.3. Application Development

This use case acquires more and more importance due to the wide spread usage of XML
and the growing popularity of XQuery as a processing language. Here we can talk about
two main types of applications that can be developed.
The first ones are those that communicate with the system through some kind of APIs
like XML:DB, XQJ, REST or an API specific for the used database. This communication
can happen either locally, in which case the database is most probably embedded in the
application, or remotely – using HTTP or some other protocol supported by the system,
e.g. XML:RPC.
The second type are the applications developed entirely in XQuery. They may either
manipulate the data stored in the database and use it for some purpose or may receive
data coming from external data sources and store it or just process it. The extension of
XQuery with additional modules like these for sending HTTP requests[HTT], file system
operations[FIL] and querying relational databases[SQL], makes this possible. Five prac-
tical scenarios for XQuery applications are listed in [XQA].
In order to be applicable in a greater variety of programs, an XML database shall of-
fer APIs which are capable of handling non-XML data, too. The same requirement is
true also for the XQuery functionality covered by the XQuery processor. It shall not be
restricted to the standard XQuery functions[XQF] but must include also such for inter-
action with the database and for collecting and processing different kinds of data.

2.4. Extending the Input and Output Functionality

The actors in this use case are the developers of the XML database. As already men-
tioned they are not direct participants in the input and output process but those who are
supposed to extend the system with support of new data sources and formats – some-
thing that determines how useful and convenient it is for the other two actors to work
with it.
The requirements here are related to the implementation of the input and output of data
in the XML database. First, it has to be central, which means that the same functionality
for parsing, for example, can be reused by all data channels – APIs, XQuery, GUI, etc.
In order this to be possible a second requirement has to be fulfilled namely the one for
strong decoupling from the rest of the functionality in the system. In other words the

5

2.4. Extending the Input and Output Functionality

logic which is responsible for the input and output must do only what it is supposed
to do – convert data to the XML internal representation specific for the database or vice
versa. It must not interfere or depend on other components of the system. Meeting these
two requirements will save a lot of work to the developers when adding support for new
kinds of data, and on the other hand, make the whole system far more flexible.

6

3. Existing Solutions

Apart from analyzing the use cases for achieving a certain goal, it is always practical
to see what kinds of solutions do already exist in the same direction. In this chapter
we present the results of a short investigation on the input and output features of some
native XML databases and XQuery processors. Among the aspects which stay in focus
are the data channels supported by these systems and the kinds of data which can be
used with them.
As a preliminary to the research it should be noted that generally there are two possible
ways to store a resource in a native XML database – either as XML using the database-
specific internal representation or directly as raw data. Since we are more interested
in the first case, whenever we consider the input and output supported by a given data
channel, we will be looking at the data formats which can be handled by it and stored or
converted to XML and vice versa. Though, if binary data can be handled, too, this will
be denoted.

3.1. Qizx

Qizx is an embeddable engine which allows storing and indexing XML documents. It
can be directly integrated in a standalone Java application, or it can be the core of a
server[QIZa, QIZb]. The analysis in this section is done with version 4.4 of the free en-
gine edition of Qizx.
Since it was designed to be used as an embedded database, Qizx offers an API which lies
at the heart of all channels for data input and output. Hence, it is not surprising that the
API itself is the best approach for data processing. Apart from XML HTML, JSON and
raw input is supported, too. When an application developer wants to load data in some
of these formats, they can use the corresponding ContentImporter class. For example:

// Create an HTML Importer
f i n a l HTMLImporter htmlImp = new HTMLImporter () ;
// Read HTML input
f i n a l Fi le InputSt ream input = new Fi le InputSt ream (pathToHtml) ;
// Set HTML input
htmlImp . s e t Inpu t (input) ;
// Import HTML f i l e to a l i b r a r y

7

3.1. Qizx

l i b . importDocument (pathInLib , htmlImp) ;
l i b . commit () ;

Along with the standard serialization methods[XQS] one can also output JSON and raw
data. This functionality, except the support of binary data input and output, is exported
to XQuery extension functions. For instance, the following XQuery code snippet[QIZb]:

x:content-parse(’{ "a" : 1, b:[true, "str", {}], nothing:null}’, "json")

produces:

<?xml version= ’ 1.0 ’ ?>
<map xmlns=”com . q izx . j son ”>

<pa i r name=” a ”>
<number>1.0</number>

</ pa i r>
<pa i r name=”b”>

<array>
<boolean>t rue</ boolean>
<s t r i n g>s t r</ s t r i n g>
<map/>

</ array>
</ pa i r>
<pa i r name=” nothing ”>

<n u l l />
</ pa i r>

</map>

Other ways for data import and export in Qizx are provided by the graphical user inter-
face, the command line tool and the REST API. However, although they internally use the
Qizx API, the range of data formats covered by them is more limited. For instance, a user
cannot import HTML or JSON through the GUI. Table 3.1 gives an overview of the input
and output channels offered by Qizx and the kinds of data which can flow through them.

XQuery GUI Command Line Qizx API REST API
HTML X/X -/X -/X X/X -/X
JSON X/X -/- -/- X/X -/X
Text -/X -/X -/X X/X -/X

binary formats -/- X/X -/- X/X X/X

Table 3.1.: Qizx 4.4: Input/Output

8

3.2. eXist-db

3.2. eXist-db

eXist-db is an open-source database management system written in Java. It stores
XML instances according to the XML data model and features efficient, index-based
XQuery processing. Out of the box, eXist runs inside a web application served by a
pre-configured Jetty server[EXIb]. The analysis in this section is done with eXist Tech
Preview 2.0.
eXist provides various ways for data input and output. It offers XML:DB, REST, SOAP,
XML-RPC and WebDAV APIs. No matter which of these APIs is used, the data that comes
through it is always stored, and possibly converted beforehand, depending on what is de-
fined for its content type in a central XML configuration file. Consequently all XML-based
formats, e.g. xsd, wsdl, gml, nvdl, application/xml, image/svg+xml, etc. are stored as
XML and the remainder is treated as binary. As far as the output is concerned, all APIs
except for SOAP and WebDAV support in addition to the standard serialization methods,
JSON and HTML5. eXist’s XQuery implementation allows working with non-XML data,
too. There are extension functions for HTML and CSS parsing and such for executing
XSLT transformations and XSL-FO processing. Furthermore, one feature, which is still in
development, is a module for content extraction based on Apache’s Tika1. It offers three
XQuery functions – one for metadata extraction from a resource, one for both metadata
and content extraction and one which is a streaming variant of the other two[EXIa]. All
functions produce XHTML. The following example illustrates how using this module we
can extract the metadata from a sample PNG file:

import module namespace c="http://exist-db.org/xquery/contentextraction"

at "java:org.exist.contentextraction.xquery.ContentExtractionModule";

let $path := "/db/test/samplePNG.png"

let $binary := util:binary-doc($path)

return c:get-metadata($binary)

This will return:

<html>
<head>

<meta name=” Compression L o s s l e s s ” content=” true ” />
<meta name=” Dimension P i xe lAspec tRa t i o ” content=” 1.0 ” />
<meta name=” iCCP ” content=” profi leName=Photoshop ICC p r o f i l e ,

compressionMethod=d e f l a t e ” />
<meta name=” t i f f : ImageLength ” content=”1427” />
<meta name=” height ” content=”1427” />
<meta name=”pHYs” content=” p ixe l sPe rUn i tXAx i s =11811,

1A content extraction framework based on Java

9

3.2. eXist-db

p ixe l sPe rUn i tYAx i s =11811, u n i t S p e c i f i e r=meter ” />
<meta name=” t i f f : ImageWidth ” content=”2846” />
<meta name=”Chroma Black I sZero ” content=” true ” />
<meta name=” Data BitsPerSample ” content=”8 8 8” />
<meta name=” Dimension V e r t i c a l P i x e l S i z e ” content=” 0.08466683 ” />
<meta name=” t i f f : Bi tsPerSample ” content=”8 8 8” />
<meta name=” width ” content=”2846” />
<meta name=” Dimension ImageOrientat ion ” content=” Normal ” />
<meta name=”Chroma Gamma” content=” 0.45453998 ” />
<meta name=” Compression CompressionTypeName ” content=” d e f l a t e ” />
<meta name=”cHRM” content=” whitePointX =31269, whitePointY =32899,

redX=63999,redY=33001, greenX=30000, greenY=60000, blueX=15000,
blueY=5999” />

<meta name=” Data SampleFormat ” content=” Uns ignedIntegra l ” />
<meta name=” Dimension H o r i z o n t a l P i x e l S i z e ” content=” 0.08466683 ” />
<meta name=” Transparency Alpha ” content=” none ” />
<meta name=”Chroma NumChannels ” content=”3” />
<meta name=” Compression NumProgressiveScans ” content=”1” />
<meta name=”Chroma ColorSpaceType ” content=”RGB” />
<meta name=”IHDR” content=” width=2846, he ight =1427,

bi tDepth=8, colorType=RGB, compressionMethod=de f l a t e ,
f i l t e rMe thod=adaptive , inter laceMethod=none ” />

<meta name=” Data P lanarConf igura t ion ” content=” P i x e l I n t e r l e a v e d ” />
<meta name=”gAMA” content=”45454” />
<meta name=” Content−Type ” content=” image/png” />
< t i t l e />

</head>
</html>

Since Tika is capable of handling content and metadata from a wide range of formats –
PDF, Microsoft Office and Open Document, various image and audio formats, etc. this
module will contribute to eXist’s XQuery input functionality a lot. Apart from the above
listed ways for data input and output, there is also a Java-based admin client, which is
able to import and export XML and binary data from a database. The following table
shows the data channels present in eXist 2.0 along with some of the input and output
formats supported by them:

XQuery REST XML:DB WebDAV SOAP XML-RPC Admin Client
HTML X/X -/X -/X -/- -/- -/X -/-

HTML5 -/X -/X -/X -/- -/- -/X -/-
Text -/X -/X -/X -/- -/- -/X -/-

JSON -/X -/X -/X -/- -/- -/X -/-
CSS X/- -/- -/- -/- -/- -/- -/-

MS Office formats X/- -/- -/- -/- -/- -/- -/-
OO formats X/- -/- -/- -/- -/- -/- -/-

PDF X/- -/- -/- -/- -/- -/- -/-
EPUB X/- -/- -/- -/- -/- -/- -/-

binary formats X/X X/X X/X X/X X/X X/X X/X

Table 3.2.: eXist 2.0: Input/Output

10

3.3. MarkLogic

3.3. MarkLogic

MarkLogic is a commercial XML database developed in C++, which is able to handle
”Big Data” and unstructured information. The following analysis is done with version
5.0.2 of MarkLogic Server Standard Edition.
MarkLogic was designed to meet the needs of a wide range of customers – from the
media and public sector to healthcare and financial services. It is primarily used as a
content-repository and this is why it is able to work with a great variety of data for-
mats. Apart from that, it offers diverse ways to make use of the data it stores. From a
user’s perspective, MarkLogic offers a browser based Information Studio. It allows quick
and straightforward creation of databases and loading of documents in them. Using it
one can collect content from different data sources, process it with XSLT and built-in
transformation logic, and subsequently import it into a database[MLI]. Other input and
output channels offerred by MarkLogic are its own specific API – XCC, a rich XQuery
implementation and support for various WebDAV clients. Apart from these, there is also
a command line tool, which was developed as a community project.
Every document in a MarkLogic Server database has a format associated with it. The for-
mat is based on the root node of the document and can be XML, Binary or Text(CLOB)[MLA].
The documents which enter a database through the various channels, as decribed above,
are stored depending on the mime types configuration associated with the database. This
configuration is central and contains a mapping between a mime type and the format in
which it must converted before being stored. Users can customize the mapping accord-
ing to their needs. This mapping will be applied on any incoming data, no matter which
way is used for its input – API, UI, XQuery.
Obviously the format that allows XQuery to perform best is XML, yet not every input
format can be processed with pre built transformation scenarios. For this purpose, Mark-
Logic provides its content processing framework. In short this is a framework consisting
of two main types of components – domains and pipelines. The domains define groups
of documents which are similar and thus are supposed to be processed in a common way.
Pipelines are the means through which the documents in a domain are processed. They
consist of conditions and actions which themselves are either XQuery or XSLT scripts.
The following example shows a sample pipeline for HTML conversion[MLC]:

<?xml−s t y l e s h e e t hre f=” / cpf / p i p e l i n e s . c s s ” type=” t e x t / c s s ” ?>
<p i p e l i n e xmlns=” h t t p : // marklogic . com/ cpf / p i p e l i n e s ”

xmlns :x s i=” h t t p : //www.w3. org /2001/XMLSchema−i n s t ance ”
xs i : schemaLocat ion=
” h t t p : // marklogic . com/ cpf / p i p e l i n e s p i p e l i n e s . xsd ”>
<p ipe l ine−name>HTML Conversion</ p ipe l ine−name>
<success−ac t ion>

<module>/ MarkLogic / cpf / a c t i o n s / success−ac t ion . xqy</module>
</ success−ac t ion>
<f a i l u r e−ac t ion>

<module>/ MarkLogic / cpf / a c t i o n s / f a i l u r e−ac t ion . xqy</module>
</ f a i l u r e−ac t ion>

11

3.4. Zorba

<s t a t e−t r a n s i t i o n>
<annotat ion> Convert HTML documents and only HTML documents .
</ annotat ion>
<s t a t e>h t t p : // marklogic . com/ s t a t e s / i n i t i a l</ s t a t e>
<on−succe s s>h t t p : // marklogic . com/ s t a t e s / converted</on−succe s s>
<on−f a i l u r e>h t t p : // marklogic . com/ s t a t e s / e r ro r</on−f a i l u r e>
<p r i o r i t y>9200</ p r i o r i t y>
<execute>

<cond i t ion>
<module>

/ MarkLogic / cpf / a c t i o n s /mimetype−cond i t ion . xqy
</module>
<opt ions

xmlns=” / MarkLogic / cpf / a c t i o n s /mimetype−cond i t ion . xqy ”>
<mime−type>t e x t /html</mime−type>

</ opt ions>
</ cond i t ion>
<ac t ion>

<module>
/ MarkLogic / convers ion / a c t i o n s / convert−html−ac t ion . xqy

</module>
<opt ions

xmlns=
” / MarkLogic / convers ion / a c t i o n s / convert−html−ac t ion . xqy ”>
<des t ina t i on−root />
<des t ina t i on−c o l l e c t i o n />

</ opt ions>
</ ac t ion>

</ execute>
</ s ta t e−t r a n s i t i o n>

</ p i p e l i n e>

Such a framework allows to convert arbitrary input data to XML if one supplies the sys-
tem with rules and processes to apply. MarkLogic delivers a default content processing
option, which includes pipelines for transforming PDF, MS Office, DocBook and other
formats to XML. When this option is activated for a given database, documents which
enter it and have one of these formats are automatically stored as XML. A user can add
also their own custom pipelines.

3.4. Zorba

Zorba is an open-source XQuery processor written in C++. It is designed to be em-
bedded into other systems and consequently is able to process XML stored in different
places - main memory, mobile devices, browsers, disk-based, or cloud-based stores. The
analysis here is conducted with version 2.1.0 of Zorba.
In order to be pluggable in diverse kinds of systems, an XQuery engine has to be able to

12

3.5. BaseX

work with various data sources and data formats. Zorba achieves this by shipping a rich
XQuery library and a C++ API, which allows the execution of queries. Most prominent
among the available modules for input and output is the fetch module, which offers func-
tions for getting the content or content type of a resource identified by a URI. Another
helpful module is the HTTP client providing functions for performing HTTP requests.
As far as the supported data formats are concerned, Zorba ships several extension func-
tions for handling data different from XML. Examples of these are such for conversion
between CSV and XML and vice versa, for tidying HTML and for conversion between
JSON and XML. Apart from these XSL transformations and XSL-FO processing are sup-
ported, too. The next code snippet[ZOR] demonstrates how a simple XSL-FO document
can be converted to PDF and stored on the file system:

import module namespace fop="http://www.zorba-xquery.com/modules/xsl-fo";

import module namespace file="http://expath.org/ns/file";

declare namespace fo = "http://www.w3.org/1999/XSL/Format";

(: PDF text :)

let $xsl-fo := ’Hello, world!’

(: Generate PDF :)

let $pdf := fop:generator($fop:PDF, $xsl-fo)

(: Write PDF into a file :)

return file:write-binary("simple.pdf", $pdf)

Aside from PDF, the XSL-FO module can convert documents to PS, PCL, AFP, Text, PNG,
Postscript, RTF and TIFF, too.

3.5. BaseX

BaseX is a light-weight and high-performance XML database and XQuery engine. Since it
will be presented in detail in Chapter 5, we will only have a quick look at its current input
and output features just for the sake of comparison with the other presented systems.
The analysis is done with version 7.1.1.
Among the data channels offered by BaseX are a graphical user interface, a command
line tool, REST, XML:DB and WebDAV APIs and a lot of XQuery extension functions.
Besides XML, BaseX supports HTML, JSON, CSV and binary data. Documents with such
formats can be easily imported into a database via GUI or command line. The next
example shows how using the commands provided by BaseX a user can use the CSV
parser and specify parser options:

13

3.6. Conclusion

SET PARSER csv

SET PARSEROPT encoding=utf-8, lines=true,

format=verbose, header=false, separator=comma

After these lines are executed, BaseX will handle files, entering the currently opened
database, as CSV files. BaseX will process them using the CSV parser and the specified
options. The same functionality can be used from the GUI and XQuery, too. Though
a separate XQuery function for parsing CSV is not provided at present. The REST and
XML:DB APIs can also handle the above listed formats. The XQuery implementation
offers functions for storing raw data and converting JSON to XML representation. As
far as the output is concerned, the same formats excluding CSV can be returned by the
command line, the REST API and corresponding XQuery extension functions. Execution
of XSL transformations is supported through XQuery. WebDAV is capable of handling
only XML data. BaseX can work with both local and remote data sources. Besides the
GUI and command line this functionality is exported as an XQuery module for reading
and writing files on the file system and sending HTTP requests.

XQuery GUI Command Line REST XML:DB WebDAV
HTML -/X X/X X/X X/X X/- -/-
Text -/X X/X X/X X/X X/- -/-
CSV -/- X/- X/- X/- X/- -/-

JSON(ML) X/X X/X X/X X/X X/- -/-
binary formats X/X X/- X/X X/X X/X X/X

OO formats -/- X/- -/- -/- -/- -/-

Table 3.3.: BaseX 7.1.1: Input/Output

3.6. Conclusion

The conducted investigation shows that it is not unusual for an XML database and
XQuery processor to handle data different from XML. However, a quick look at the above
tables reveals several shortcomings in the existing solutions. If we take the data chan-
nels provided by a system and the data formats, which can flow through them, we can
observe some lack of harmony between input and output. In other words if data in some
format can enter a database and be kept there as XML, this does not mean that it can
leave the database in the same one format and often this is actually expected. Further-
more, in most cases a mechanism is absent, which allows a user to indicate in some way
how they want to store their data or how they want to retrieve it out of the database.
Consequently often the functionality offered by one channel for input and output does
not match this offered by another one. If a system aims to be equally useful to each of
the actors described in Chapter 2, this should not happen.

14

4. Generic Architecture for Input and Output

The analysis in the previous chapter has shown that in many cases there are inconsisten-
cies between the supported input and output in an XML database or XQuery processor.
Often data can enter a system in a given format through a given channel, but: cannot
leave it in the same format through the same channel, or cannot leave it in the same
format through any channel at all. We believe that at the root of this dissonance lies al-
most always a badly designed interface for data input and output. In addition it is hard
to export this functionality consistently through XQuery, APIs and other user interfaces.
This is why in this chapter we will start by defining some general requirements, which
shall be met by such functionality. Based on them we will propose a generic architecture
for data input and output, which can be implemented by any XML database. At the end
we will show how this functionality can be exposed to the different types of actors.

4.1. Requirements

The requirements we are going to define here are directly related to those mentioned in
Chapter 2 when describing the use case for extending the input and output functionality
of an XML database. Thus we will discuss aforementioned ideas in some more depth.
First, the logic which takes care for data input and output has to be strongly decoupled
from the rest of the system’s components. This leads to the notion of modular architec-
ture. As it is defined in [MOD], the beauty of such an approach is that one can replace
or add any one component (module) without affecting the rest of the system and this is
what we actually strive for. The architecture must allow users to plug in support for new
data formats, i.e., adding new parsers or serializers, invisible to the remaining parts of
our XML database. We want the storage implementation, the XQuery implementation,
the various APIs and user interfaces to be absolutely unaffected by such changes. They
should neither care for the format of the data and how it shall be treated and brought to
XML nor vice versa. They should only receive it after it was processed by a parser or a
serializer and either store it or give it back to the user in the form he/she has requested.
Second, this logic has to be centralized so that it can be reused from everywhere. This
requirement can be easily met when the first one is fulfilled. This is why we will not
discuss it further or separate it as an individual one. However, centralization remains
an important aspect when it refers to defining diverse options for import and export of

15

4.2. Architecture

data. Among these are how the various data formats shall be stored – as XML or as raw
data; what shall be stored when it comes to binary formats – content, metadata or both;
how a specific format must be parsed to XML, i.e. which parser options must be applied;
how XML must be serialized to a specific format or which serialization options must be
applied. All of these possible settings shall be configurable and accessible through all
data channels offered by a system.
These are the two main requirements we are going to follow while designing our solution
for data input and output – modularity of the functionality for handling different data
formats and central configuration of input and output options, parser and serialization
parameters. The prize that we will win if we stick to them is a consistent implementa-
tion, which satisfies the needs of all three types of users and can always serve as a basis
when extending the XML database with new data channels.

4.2. Architecture

4.2.1. Data Flow

Before we continue with the actual design of our architecture it would be useful to
analyse how the input and output processes in the system should look like if we follow
the mentioned requirements. That is why we will begin with a brief investigation on the
data flow in the system, which will help us later to model the main components of our
solution.

4.2.1.1. Input

We begin with the input. Figure 4.1 gives an overview of the steps which must be taken
once data enters an XML database through some of the provided channels. The first
one is to determine its content type. This is needed in order to decide how it shall
be processed and to choose the appropriate parser for it. We already mentioned that
an XML database may offer diverse options through which a user can manage the way
their data is handled. Among these options are such that indicate how data with given
content type must be processed – as XML, as raw as well as such that refer particularly
to the parser to be used. Let us call the first ”input options” and the latter – ”parser
options”. Input options also dictate what actually shall be processed – only metadata,
only content or both. This is important when a user has to deal especially with binary
files like images and videos, for instance. In such case it is clear that the content cannot
be turned into XML. Representing it as a Base64 item is not a good option, too. However,
leaving it raw, i.e. in its original format, and converting its metadata to XDM, may be a
better approach.

16

4.2. Architecture

data

data
determine

content
type

import
options

determine
how to

process

choose
parser

parser
options

parse
content type

XDM parser

split
metadata

from
content

raw

metadata

raw content

XDM

Figure 4.1.: Input Data Flow

Another possible solution is to work exclusively with metadata because in most of the
cases it contains the useful information to deal with. Once the content type is known,
the input options have to be checked in order to determine how to proceed. If the data
has to be converted to XML, an appropriate parser has to be chosen. If the data must be
kept raw in its original format and it is indicated to parse its metadata separately, then
an appropriate parser has to be selected for the format of the metadata. The last step
from the process is the actual parsing which is done using the appropriate parser, the
corresponding options for it and the data itself. The final result is the parsed data in the
database-specific XDM representation. In case of binary data, the content is treated in a
way specific to the system in use.

4.2.1.2. Output

We continue with the output process. It always depends on the target format in which
the data has to be converted. Another important thing is whether the data is an XDM
instance or it is in its original raw format. In case of XDM the next step is clear – it
is serialized to the target format taking into account the serialization options. In case
of raw data the only serialization which takes place is this of the metadata and it is
transformed to the corresponding metadata format. A simple example can be given
with an MP3 file which content is stored as raw and its metadata – as XML. Once this
file is to be exported from the XML database, its metadata will be serialized back to
ID3 and synchronized with the raw content in case any changes have been performed
beforehand.

17

4.2. Architecture

target
format

serializer data (in target format)choose
serializer

serializer
options

XDM

raw content

user/applicationSerialize

Figure 4.2.: Output Data Flow

4.2.2. Input

At this point we have a general idea how our mechanism for input and output shall
work. This is sufficient to start taking a closer look at the described steps and think what
kind of components are needed for a concrete implementation of the concept. In this
and the next section we will model a framework of several classes which will serve to
achieve the presented data flows. We will try to make it flexible enough to meet the two
requirements we have defined at the beginning of the chapter. The definition language
will be UML for Java. Though, the framework shall be implementable in any other object
oriented language.
As in the previous section we are going to look individually at the input and output
processes and we will start with the input. The most intuitive way to begin is to consider
which are the main ”participants” in the data flow and which are the main actions taking
place.

4.2.2.1. Data Sources

The input process always starts with a data source. This can be a file or a collection of
files – directory or archive, on a local or a remote machine. It can be also a data stream.
Nevertheless, there are several things which have to be known in order to proceed with
the processing. First, the content type of the data is needed because based on it an
appropriate parser has to be chosen. Second, in some cases the name of the resource
and the data size may be necessary and thus they have to be provided, too. Another
important point, which may influence the next steps, is whether the incoming data is a
simple file or a collection of files. Finally, a data source implementation shall provide

18

4.2. Architecture

a way to read the data itself. Based on these requirements we can define an interface
which will allow these necessary actions to be performed. Figure 4.3 shows the UML
diagram corresponding to it. The classes which will implement it will represent different
types of data sources.

Figure 4.3.: Interface DataSource

The method getData() returns the stream from which the actual data can be read.
getContentType() gives back the content type. The methods isCollection() and
getEntries() can be used to check if the data source is a directory/archive and to get
the corresponding entries from it as a list of DataSource instances.
Listings 4.1 and 4.2 are example Java implementations of DataSource. HttpDataSource
represents a data source located on an HTTP server. As it can be seen in its constructor
is opened an HTTP connection to the address on which the resource can be found. The
content type is taken from the header Content-Type and the data is read from the input
stream of the established connection.
The class LocalDataSource is a sample implementation of a data source located on a
local machine. Here the constructor has a different behavior as we are working with
resources on the file system. The only thing that it does is to create an instance of
java.io.File for the file with the given address. The way the content type is deter-
mined depends on the implementation. The data is read from the input stream associ-
ated with the given file.

Listing 4.1: HttpDataSource.java

public c lass HttpDataSource implements DataSource {
private URLConnection conn ;

@Override
public HttpDataSource (S t r i ng address) {

URL u r l = new URL(address) ;
conn = u r l . openConnection () ;

}

@Override
public S t r ing getContentType () {

19

4.2. Architecture

return conn . getContentType () ;
}

@Override
public InputStream getData () {

return conn . getInputStream () ;
}

}

Listing 4.2: LocalDataSource.java

public c lass LocalDataSource implements DataSource {
private F i l e s o u r c e F i l e ;

@Override
public LocalDataSource (S t r i ng address) {

s o u r c e F i l e = new F i l e (address) ;
}

@Override
public S t r ing getContentType () {

// Get the content type of the resource
return determineContentType (s o u r c e F i l e) ;

}

@Override
public InputStream getData () {

return new Fi le InputSt ream (s o u r c e F i l e) ;
}

}

4.2.2.2. Parsers

The DataSource interface defines a common way to work with data sources. They can
provide data with different content types. However, there are always only two options
to process it – either to turn it into an XDM instance or to leave it as it is in its original
format. This leads to the need for a unified way to parse data with various content types.
Here we are going to define how shall look like the interface of a common parser used
in an XML database.
First, if data with a given format cannot be converted to XDM or it is explicitly stated
that it shall be left raw, then it suffices to just read it from the data source and do not
parse it. Of course, it can always be encoded in Base64 and stored in the database or
returned as an item but this does not make much sense. In that form it will not be useful
since querying and manipulating via XQuery is impossible. Second, data often comes
with other data which describes it, namely metadata. It is not unusual if the metadata
is sometimes more helpful to a user than the content it refers to. This is why a good
mechanism for input shall be able to treat content and metadata separately.

20

4.2. Architecture

Figure 4.4.: Abstract Class Parser

Having in mind these requirements we define the next important part of our mecha-
nism – the abstract class Parser. Figure 4.4 shows its UML definition. No matter what
is parsed – just metadata or both metadata and content, this operation depends always
strongly on the format of the data we are dealing with. That is why we leave the methods
parseMetaDataToXML() and parseContentToXML() abstract. They will be implemented
differently for each content type. On the other hand, getting the content in its raw form
from a data source is trivial. Thus getRawContent() must be implemented directly in
the class Parser with the database-specific logic.
The advantage of the Parser class is that it offers flexibility. In other words a poten-
tial user – an application developer, for example, can work with any ”part” of their
data and they can have it in both possible forms – XML and raw. In this way, if
they want to retrieve the metadata of an image file, for instance, they can use the
parseMetaDataToXML() method and have it as XML. If they want just the raw con-
tent, they can use getRawContent(). Furthermore, if they require the whole image file
as XML, a possible way to have this is if the corresponding implementation returns a
sequence of two items - one element representing the metadata and a second one with
the Base64 encoded content.
Working separately with metadata and content is convenient but the relation between
them has to be maintained in some way because they together constitute a whole re-
source. Once they are parsed individually, they still have to remain connected because
a change in the metadata always has to be reflected on the content. Therefore, we
need a component which represents a resource after it has been processed, i.e. an en-
capsulation of the parsed metadata and the parsed or raw content. Figure 4.5 shows
the corresponding UML diagram. The Resource class represents a wrapper around an
already parsed resource. Since such a resource can be instantianted in various ways –
only with metadata, both with metadata and raw or XML content, only with content, the
Builder design pattern shall be used for its implementation. Once the input is parsed,
it can be packed in such a wrapper and handled directly to the storage mechanism, for
example. Furthermore, when data comes from the database, i.e. in case of output, it
can be wrapped again in this way by the storage and handled to a preferred serializer,
for instance.

21

4.2. Architecture

Figure 4.5.: Class Resource

4.2.2.3. Options

The components we have defined until now meet to great extent the aimed requirement
for modularity. The DataSource interface and the Parser abstract class allow to add
new functionality for input to the system without affecting any other part of it. Further-
more, as we tried to stick to the rule that each separate component must be responsible
for one particular task, the resulting interfaces are intuitive enough to be easily learned
and used by an application developer who is not acquainted with the specifics of the XML
database. However, the whole picture is still not complete. A developer does not need to
be familiar with the internals of the system but if they want to use its input functionality,
they have to know how each content type can be processed, which is the corresponding
parser for it and what options are associated with this parser. If the variety of supported
content types is wide, this becomes a difficult task, which automatically decreases the
system’s user-friendliness. This brings us to the second requirement we have defined,
namely the centralization of input and parser options.
Since we have already mentioned self-description as one of the advantages of XML and
since we deal with XML databases, the most natural way to implement the concept of
centralization is to use XML itself. A way to do this is to keep the necessary informa-
tion about content types and parsers in the form of XML files on exactly one place in
the system. Where this place should be depends on the concrete XML database. The
structure of these files is defined by the XML Schemata A.1 and A.2. A closer look at
them reveals the basic idea. In the XML file defining the input options, each element
<input> corresponds to an input format supported by the system. It has four attributes
with the following meanings:

• content-type: indicates the MIME type of the data as specified in RFC2046

• process-as: indicates how content shall be processed – as XML, as raw, as mixed
or none meaning that it shall not be processed at all

22

4.2. Architecture

• process-metadata: indicates if the metadata shall be processed separately or not

• parser: indicates the name of the parser responsible for the parsing from name to
format

In this way, if an XML database supports processing of MP3 data and offers a parser for
ID3 metadata, this can be made clear as follows:

<input content−type=” audio /mpeg”
process−as=”raw”
process−metadata=” t rue ”
par se r=” input . pa r se r s . MP3Parser ” />

This means that when audio/mpeg data is processed, its content will be left in its original
format, its ID3 metadata will be parsed to XML and all this will be done by the parser
input.parsers.MP3Parser. If only metadata shall be processed, then process-as must
be set to none.
The options associated with each parser are listed in a separate XML file. In it each
<parser> element corresponds to a parser. Its name is specified by the name attribute
which must have the same value as the parser attribute in the according entry in the
input options. The offered parser options are declared as children of the <parser> el-
ement. In this manner an HTML parser, for instance, can be presented in the following
way:

<parse r name=” input . pa r se r s .HTML”>
<opt ions>

<doctype>omit</ doctype>
<char−encoding>utf−8</ char−encoding>

</ opt ions>
</ parse r>

With these two XML files placed somewhere in the system the concept of centralization
is realized. Although this is a consistent and convenient way to manage the data pro-
cessing, it is restrictive to some extent. This comes from the fact that the options are
specified on a system-wide level. If a user wants to store files with particular content
type as XML in one database but as raw in another or just wants to parse them differ-
ently in the different databases, this would be impossible or they will have to change the
settings every time they switch the database. This seems quite annoying and this is why
it would be much better if the same options could be controlled on a database level, too.
This could be accomplished by allowing the user to make their own configuration of the
same settings for each database. If the system-wide configuration satisfies their needs,
however, they could use it as a default one. This feature can be provided by keeping two
XML files with exactly the same structure for every database. They shall contain only the
entries for the ”affected” content types and parsers. Whenever data enters a database,

23

4.2. Architecture

first it will be checked if this database has a configuration associated with it and if yes -
it will be taken into account. Otherwise the default one will be used.

Figure 4.6.: Class InputConfiguration

In order the described options to be easily accessible and manageable, we will define a
class which will be dedicated exclusively to this purpose. Let us call it InputConfiguration.
It represents the settings referring to a single content type supported by the system. It
is always instantiated with a content type name or with a content type and a database
name. If no database is set or the given database does not have a configuration as-
sociated with it, the above three attributes are read from the system-wide configura-
tion. Otherwise, the database-specific one is used. The corresponding get and set

methods can be used to retrieve and change the existing settings. A change can be
persisted either as database-specific using the method saveAsDatabaseDefault() or as
system-wide using saveAsSystemDefault(). Figure 4.6 shows the UML diagram for
InputConfiguration and Figure 4.7 depicts the initialization process.

24

4.2. Architecture

no

yesnoyes

no

yes

yes

no

use sysConfuse dbConf End

content type (contType)
+

database (db)

contType is set
in sysConf

db has
configuration? db == nullcontType is set

in dbConf?

Figure 4.7.: InputConfiguration Initialization

4.2.2.4. Direct Processing

The classes presented in the previous sections correspond to separate components that
can be used together to accomplish the input data flow depicted on Figure 4.1. Although
they define an intuitive way for data processing, it would have been more convenient if
the whole workflow can be “automated“ in some way and controlled by just one module.
In other words it would have been quite well if a user can just pass their data to the
database and it itself decides how to process it. For this purpose we need one last
component which will make our input architecture complete. Its UML definition is given
in Figure 4.8.

Figure 4.8.: Class InputProcessor

25

4.2. Architecture

Create an instance of
inputConf:parser (p)

Set ds:data as
input to p

initialize inputConf using
ds:content type

and db

Set XML content in builder

processContent?

Initialize Resource.Builder
(builder)

Set metadata in builder

Set raw content in builder

Is empty
inputConf?

yes

no

yes

yes

yes

no

no

no

Set inputConf:pasrer options
as options for p

inputConf:
processMetadata?

Use p to parse metadata
to XML

Build resource using
builder.build()

inputConf:
process-as = xml?

inputConf:
processMetadata?

Use p to parse
content to XML Use p to get raw content

End

Start

Add resource to
result list

ds := DataSource
db := database

yes

no

Figure 4.9.: Process a single file

26

4.2. Architecture

The InputProcessor class works hand in hand with the rest of the components. It is
always instantiated with a data source from which the input is read. If it is required
to use the input configuration of a particular database, then the name of the relevant
database can be set via setDatabase(). Another option is to set directly a ready in-
put configuration using setInputConfig(). If no database or configuration is set, the
default system-wide configuration will be used. The process() method represents the
above mentioned concept of automation. The flowchart on Figure 4.9 describes the way
it works for a single file. First, it is checked if there is an initialized input configuration
and if not – one is initialized as shown on Figure 4.7. The next step is to check if the
content has to be processed. If yes – an instance of the corresponding parser is created,
the data from the data source is set as its input and the options from the configuration
– as its options. After that a Resource instance is created using the Builder class. It is
later populated with raw or XML content and metadata depending on what is written
in the input configuration. Finally the resource is constructed and added to the result list.

yes

no

yes

no

ds := next data source in ds

Is empty
inputConf?

Start

ds := DataSource
db := database

 InputConf:
process-as = mixed?

initialize inputConf using
ds:content type

and db

Process ds

return

Figure 4.10.: Process a directory or archive

Figure 4.10 demonstrates how the process() method works when the data source is

27

4.2. Architecture

a directory or archive. The input configuration is initialized in the same way but the
following step checks if the indicated format is mixed. If this is the case, the method
starts from the beginning with the next data source. If the format is XML or raw, the
data source is processed as described above and the method returns to continue with
the next one.

4.2.3. Output

In this section we are going to define the components which shall take care for the
output in an XML database. The whole idea remains quite similar to the one used for
the definition of the input components. However, as it will be seen, the output process
is probably a little simpler and determined to a great extent by the user.

4.2.3.1. Serializers

We begin with the serializers. Their only task is to transform data from XDM to some
content type desired by the user. Of course, this process always depends on what is this
content type and in case the data comes from the database – how it was stored there.
When it comes to data which was stored entirely as XML, the serialization process is
straightforward – the internal representation has to be transformed to the target format
and the result has to be written in some destination given by the user. When, however, it
comes to binary data which content was stored as raw and its metadata – as XML, then
some additional processing has to be done, e.g. synchronizing the metadata in case it
was updated in the meantime.1 Furthermore, it may be required to output exclusively
the content of a resource – without any metadata – in order to reduce its size. Apart
from that a serializer may accept various options which shall be possible to set before
processing. Having all these requirements in mind, we can define how the interface of a
serializer shall look like. Figure 4.11 shows the corresponding UML diagram for it.

Figure 4.11.: Abstract Class Serializer

1Clearly ”serialization” (and in case of input - ”parsing”) is not the correct term to use in case we have
binary data but for the sake of a unified approach for input and output, we will leave this like that.

28

4.2. Architecture

A serializer is always instantianted with a resource which must be serialized and an out-
put stream where the result shall be written. The serialization process is strongly depen-
dent on the requested output format. This is why the methods serializeOnlyContent()
and serializeContentWithMetadata() are abstract. They must be properly imple-
mented in the relevant serializers. On the contrary – setting the preferred options shall
be common to all serializers and thus this method is left non-abstract.

4.2.3.2. Options

Following the course of definition we used for the input, we arrive at the point where
the centralization concept in case of output shall be realized. Here is used the same
idea – there are two XML files which hold the system-wide ouput and serializer options
and whenever a database-specific configuration has to be made, XML files with the same
structure but containing only the relevant output content types and/or the relevant seri-
alizers are created for the given database. The corresponding XML schemata are shown
in A.3 and A.4 respectively. As it can be seen, the output options have a little simpler
structure than the these for input. For each possible output content type there is an
element output which has three attributes:

• content-type: name of the target content type as specified in RFC2046

• serializer: name of the serializer which is responsible for serialization to content-type

• metadata: indicator showing if metadata shall be serialized as well. This attribute
is optional and shall be used only when it comes to binary content types which
were originally stored as raw content plus XML metadata.

In that way, an entry specifying application/json as a target content type would look
like as follows:

<output content−type=” a p p l i c a t i o n / j son ”
s e r i a l i z e r=” output . s e r i a l i z e r s . JSONSer ia l i zer ” />

Consequently the corresponding entry in the serialization options may be defined in the
following way:

<s e r i a l i z e r name=” output . s e r i a l i z e r s . JSONSer ia l i zer ”>
<opt ions>

<j son−format>JsonML−array</ json−format>
<whitespace>indent</ whitespace>

</ opt ions>
</ parse r>

29

4.2. Architecture

We define the class OutputConfiguration for accessing and managing the output and
serialization options. Its UML diagram is shown on figure 4.12. As it can be seen there
are two ways to instantiate it – either only with a target content type or with a target
content type and additionally a database name. The initialization process is the same
as by the input: in case a database is specified and it has an output configuration with
the given target format in it, it will be used. Otherwise, the system-wide one will be
taken into account. Changes to the existing configuration can be made via the methods
setOnlyContent() and setSerializerOptions(). These changes can be saved either
as system-wide or as database-specific.

Figure 4.12.: Class OutputConfiguration

4.2.3.3. Direct Processing

As by the input, it would be useful to provide a more “intelligent“ way for the output
data flow. For this purpose again we will use a class which will work together with the
other two defined components – serializers and configurations. Figure 4.13 shows how
it shall look like.

Figure 4.13.: Class OutputProcessor

OutputProcessor is always instantiated with two parameters:

• resources: this is a list of Resource instances holding the documents to be serial-

30

4.2. Architecture

ized

• stream: this is the output stream in which the result from the serialization must
be written

If no special options have to be set or the system-wide configuration is acceptable, calling
the process() method shall suffice to complete the serialization process. If a database-
specific configuration must be used or the existing configuration has to be overwrit-
ten, then setDatabase() or setOutputConfig() can be called beforehand. The way
process() works is described by the flowchart in figure 4.14. In case multiple data
sources have to be packed in an archive, the same logic will be executed for each of
them and finally the output stream in which the result from the serialization is written
can be passed to an archiving mechanism, for instance.

outputConf:
onlyContent?

Is empty
outputConf?

Create an instance of
outputConf:serializer (s)

Set
outputConf:serializer options

as options for s

Use
s.serializeContentWithMetadata()

to serialize r's content

Resource (r)
+

Target output stream (target)
+

 Database (db)

Initialize outputConf using
r.getContentType() and db

Set target as output
stream for s

Use s.serializeOnlyContent()
to serialize
r's content

End

yes

no

yes

no

Figure 4.14.: Output processing with the OutputProcessor class

31

4.3. Usage

4.3. Usage

One of the advantages of the previously defined functionality is that it can be reused.
Consequently, the same features can be easily exposed via various interfaces to the di-
verse types of users. In this section we will demonstrate how this can be accomplished
for the three use cases listed in Chapter 2.

4.3.1. Extending the Input and Output Functionality

We start with showing how support for new content types can be added to an XML
database implementing the above proposed architecture. Three examples will be pre-
sented – one with a content type which can be parsed to XML, one with binary data and
one with archived data.

4.3.1.1. Input and Output of HTML data

We begin with a simple example demonstrating how to extend an XML database with
support of HTML data. In order this to be possible, first we have to create a class inher-
iting the abstract class Parser. Let us call it HTMLParser. The next step is to implement
the methods parseContentToXML() and parseMetaDataToXML(). The concrete parsing
logic is not interesting to us since it can vary from system to system. For the sake of the
example, however, parseContentToXML() can tidy up the HTML code and then trans-
form it to XHTML and parseMetaDataToXML() can read exclusively the <meta> tags.
Once the HTMLParser is developed, we can register it in the system-wide input options.
A sample entry may look as follows:

<input content−type=” t e x t /html ”
process−as=” xml ”
process−metadata=” t rue ”
par se r=” input . pa r se r s . HTMLParser ” />

The corresponding entry in the system-wide parser options may be the following:

<parse r name=” input . pa r se r s .HTML”>
<opt ions>

<doctype>omit</ doctype>
<char−encoding>utf−8</ char−encoding>
<newline>LF</ newline>
<t idy−mark>no</ t idy−mark>

</ opt ions>

32

4.3. Usage

</ parse r>

Adding support for HTML output is done in a similar way. First a serializer class has to
be created – HTMLSerializer, which inherits the abstract class Serializer. The meth-
ods serializeOnlyContent() and serializeContentWithMetadata() must be imple-
mented. For example, if the XML database supports XSLT transformations and the rele-
vant logic is easy to reuse, an XSLT stylesheet can be passed as an option to the serializer
and it will execute the corresponding transformation. Thus, a sample entry in the output
options would look like:

<output content−type=” t e x t /html ”
s e r i a l i z e r=” output . s e r i a l i z e r s . HTMLSerial izer ” />

The entry specifying the serializer options can be the following:

<s e r i a l i z e r name=” output . s e r i a l i z e r s . HTMLSerial izer ”>
<opt ions>

<s t y l e s h e e t>xmlToHtml . x s l t</ s t y l e s h e e t>
</ opt ions>

</ parse r>

4.3.1.2. Input and output of JPEG files

Adding support for JPEG data is done in a similar way. A sample implementation of
parseMetaDataToXML() can read the EXIF metadata of a JPEG file and represent them
as an XDM instance. parseContentToXML() can convert the JPEG file to a sequence
of two items - one element containing the parsed EXIF data and a Base64 item for the
content. The entry in the system-wide input options may look as follows:

<input content−type=” image/ jpeg ”
process−as=”raw”
process−metadata=” t rue ”
par se r=” input . pa r se r s . JPEGParser ” />

As far as the output is concerned, again the Serializer abstract class has to be inher-
ited. The corresponding output options may be the following:

<output content−type=” image/ jpeg ”
s e r i a l i z e r=” output . s e r i a l i z e r s . JPEGSer i a l i z e r ”
onlyContent=” f a l s e ” />

33

4.3. Usage

According to it when a JPEG file is requested from the database both content and meta-
data will be ouput.

4.3.1.3. Input and Output of .chm files

Until now we have shown how to add support for HTML and JPEG data. Next, it would
be interesting to demonstrate how a file consisting both of HTML and image files can be
processed in an XML database. Suppose that a user develops a web application consist-
ing of several HTML pages containing text and images and they use an XML database
as a backend. The pages are compressed in order to save loading time and thus when
they are imported into the database they come in a .chm format. Adding support for
this format will be quite easy since the logic for HTML and JPEG data is already present.
What we need to do is just to add the .chm MIME type to the input options and indicate
that we want to have it ”mixed” in the XML database. This means that HTML data will
be parsed to XML and JPEG files will be left in their original format. The metadata of
both file formats will be converted to XML.

<input content−type=” a p p l i c a t i o n /vnd . ms−htmlhelp ”
format=” mixed ” />

As it can be seen, no parser is specified for the given content type. This comes from the
fact that .chm files consist of ”simple” files for which parsers do already exist. We need
only to declare it in the configuration in order to make it clear to the database that it can
accept such data. The situation with the serialization is similar. The entry in the output
configuration shall look like as follows:

<output content−type=” a p p l i c a t i o n /vnd . ms−htmlhelp ”
onlyContent=” f a l s e ” />

No specific serializer is needed for the MIME type application/vnd.ms-htmlhelp because
the necessary serializers are already implemented. Of course, a .chm file can contain
other data apart from HTML and JPEG for which support will have to be added but the
example in this case is left as simple as possible. Furthermore, once the needed data is
serialized back, it has to be zipped into an archive. This logic, however, shall not be part
of the input and output framework described here but a separate module which cares
only for packing the data.
The three examples given above aimed to show that if the functionality for input and
output in an XML database is as much as possible isolated from the rest of the system,
adding support for new content types becomes a straightforward task. Database devel-
opers can concentrate only on the logic for parsing and serializing since no dependencies
to other components exist.

34

4.3. Usage

4.3.2. Application Development

In this section we are going to see how an application developer can use the functionality
integrated with the above examples. We have already mentioned in Chapter 2 that when
it comes to applications we can divide them in two main groups – such that communicate
with an XML database through some kind of APIs and such that are written purely in
XQuery. Both groups will have to use in the end the described framework, however. The
examples here will show how the relevant classes can be called for specific scenarios
and how the functionality offered by them can be exported to XQuery functions. As we
do not work with a particular database, everything that will be demonstrated is just a
suggestion and, of course, can be changed or done in another way.

4.3.2.1. Input and Output of HTML data

We begin again with the input and output of HTML data. Listing 4.3 shows a Java
example how an HTML resource can be retrieved and stored in an XML database. As it
can be seen, first an instance of DataSource has to be created in order to get the data
from the resource. In the second step the input configuration for the given content type
is retrieved and the parser options are updated. After the change, the configuration is
stored as database default. This means that from now on the new parser options will be
applied on each document with content type text/html, which enters the database with
name myDb. At the end the corresponding parser is instantianted and the data is parsed.
With the result from the parsing step, a new Resource instance is built which is passed
to the storage mechanism. If there is no need to update the input configuration this
whole process can be a lot shorter - only a DataSource instance will have to be created,
passed to the InputProcessor constructor and finally the process() method will do the
entire work and return a ready resource.

Listing 4.3: Storing an HTML resource

// Create a data source
HttpDataSource dataSource = new HttpDataSource (address) ;

// Get inputConf ig f o r input content type
S t r i ng contentType = dataSource . getContentType () ;
InputConf igura t ion i c = new InputConf igura t ion (contentType , ”myDb”) ;

// Update inputConf ig and save i t as database d e f a u l t
ParserOpt ions parserOpt ions = i c . ge tParserOpt ions () ;
parserOpt ions . se tOpt ion (” newline ” , ”CRLF”) ;
i c . saveAsDatabaseDefaul t () ;

// I n s t a n t i a t e HTML Parser
HTMLParser htmlParser = ge tPa r se r (i c . ge tPa r se r () , dataSource . getData ()) ;
htmlParser . se tOpt ions (parserOpt ions) ;

35

4.3. Usage

// Parse HTML Data
XMLData data = htmlParser . parseToXML () ;

// Bui ld a resource with the parsed data
Resource . Bu i lde r htmlResourceBui lder = new Resource . Bu i lde r () ;
htmlResourceBui lder . setXMLContent (data) ;
Resource htmlResource = htmlResourceBui lder . bu i ld () ;

// Store resource
Storage . s t o r e (htmlResource) ;

This same logic can be represented with XQuery in different ways. The idea of the
modular approach makes things easy because the underlying functionality is decoupled
enough and almost each part of it can be exported in the form of an XQuery function.
Thus, for example, the retrieval of input configuration for a particular content type can
be done with a function with the following signatures:

get-input-configuration($content-type as xs:string) as node()

get-input-configuration($content-type as xs:string,

$database as xs:string) as node()

The HTML parsing itself can be exported as follows:

parse-html($path as xs:string) as node()

parse-html($path as xs:string, $options as item()) as node()

What happens ”underneath” the XQuery processor will be exactly the same as the shown
in Listing 4.3. At the end, if the XML database in use offers extension functions for
database management, the result from parse-html() can be passed to an appropriate
function and stored in the database.
A more generic XQuery approach for parsing any kind of data supported by an XML
database can be achieved by exporting the functionality of the process() method of
InputProcessor. The resulting function can be similar to the standard XQuery doc()

function:

resource($address as xs:string) as item()

36

4.3. Usage

The behaviour behind it shall include just the creation of a DataSource instance with
$address and then calling the process() method of InputProcessor. In that way a
resource will be retrieved and parsed according to what is written for it in the system-
wide configuration.
Serializing XML to HTML is done in a similar way. Listing 4.4 demonstrates a sample
approach. Here the process starts from the “opposite side“, i.e. the XML database. There
is a resource and it has to be exported as HTML to a file on the file system. A specific
XSLT stylesheet has to be applied for the transformation and thus the corresponding
serialization option is overwritten for the case. At the end, the resource, the options and
the file output stream are set to the corresponding serializer and it does the rest of the
work. Again, the same result can be achieved with less code when the OutputProcessor

is used.

Listing 4.4: Exporting XML as HTML to a file

// Get outputConf ig
OutputConf igurat ion oc = new OutputConf igurat ion (” t e x t /html ” , ”myDb”) ;

// Update s e r i a l i z e r opt ions
S e r i a l i z e r O p t i o n s s e r i a l O p t s = oc . g e t S e r i a l i z e r O p t i o n s () ;
s e r i a l O p t s . se tOpt ion (” s t y l e s h e e t ” , ” /home/ x s l t / myStylesheet . x s l t ”) ;

// Prepare t a r g e t output
F i l e htmlOutput = new F i l e (” /home/html/myHtml . html ”) ;
Fi leOutputStream fos = new Fi leOutputStream (htmlOutput) ;

// I n s t a n t i a t e HTML s e r i a l i z e r
HTMLSerial izer htmlSer = g e t S e r i a l i z e r (oc . g e t S e r i a l i z e r () , resource ,

f o s) ;
htmlSer . se tOpt ions (s e r i a l O p t s) ;

// S e r i a l i z e db resource to HTML
htmlSer . ser ia l i zeContentWi thMetadata () ;

The output functionality can be delivered with XQuery, too. A sample XQuery function
for HTML serialization may have the following signatures:

serialize-html($resource as item(), $target-path as xs:string)

serialize-html($resource as item(), $target-path as xs:string,

$options as node())

37

4.3. Usage

4.3.2.2. Input and Output of JPEG files

The steps for importing JPEG data in an XML database do not differ in any way from
the ones used by the HTML import. What here may be interesting is how the equivalent
XQuery functionality would look like. It shall allow to retrieve exclusively metadata as
well as both metadata and content. A possible way to do this is the following XQuery
function:

parse-jpeg($path as xs:string, $only-metadata as xs:boolean)

parse-jpeg($path as xs:string, $only-metadata as xs:boolean,

$options as node())

In this way the result from calling it with $only-metadata set on true may be:

<jpeg−image name= ’ myImage . jpeg ’>
<metadata format= ’ EXIF ’>

<make>EASTMAN KODAK COMPANY</make>
<model>KODAK DX6490 ZOOM DIGITAL CAMERA</model>
<crea ted>11.05.2011 08 :47:28</ crea ted>
<aper ture>F5 .6</ aper ture>
<f o c a l>6.3mm</ f o c a l>
<exposure>1/500 s</ exposure>
< s e n s i t i v i t y>80/1 ISO</ s e n s i t i v i t y>
<mode>auto</mode>
<f l a s h>no</ f l a s h>
<white−balance>auto</ white−balance>

</metadata>
</ jpeg−image>

If the existing input configuration for content type image/jpeg is acceptable and does not
need to be influenced, the resource() function can be used, too. In case content has to
be returned, it can be encoded in Base64 and added after the metadata element in the
above example result.
As far as the output is concerned, again the steps using the Java implementation are
similar to these when XML is serialized to HTML. The corresponding XQuery function
may have the following signatures:

serialize-jpeg($resource as node(),

$target-path as xs:string)

serialize-jpeg($resource as node(),

$target-path as xs:string,

38

4.3. Usage

$only-content as xs:boolean)

serialize-jpeg($resource as node(),

$target-path as xs:string,

$only-content as xs:boolean

$options as node())

$resource is the resource from the database which has to be serialized. Another way
to define this parameter is as xs:string in which case it can be the path to a resource
in the XML database. $target-path is the path to the file in which the data has to be
exported. $only-content indicates if just content has to be exported, i.e. the metadata
will not be included in it, e.g. it will stripped off in the serialization process. The last
parameter $options specifies the serialization options to be used.

4.3.2.3. Input and output of .chm files

Finally we are going to show how a collection of data sources can be processed. If the
process() method of InputProcessor is implemented as shown on Figure 4.10, this
will be easy – just the DataSource instance corresponding to the .chm file has to be
passed to the constructor. If this is not the case, however, the long way has to be taken
and it should be iterated over the entries in the collection. For each of them the matching
parser has to be called. Listing 4.5 shows the approach. As it can be seen the logic for
parsing separate data sources in a collection is the same as the shown above. A possible
way to retrieve the entries in such a resource using XQuery may be a function with the
signature:

get-resource-entries($address as xs:string) as item()*

Listing 4.5: Importing a .chm file

L i s t I t e r a t o r <DataSource> e n t r i e s = dataSource . g e t E n t r i e s ()
. l i s t I t e r a t o r () ;

while (e n t r i e s . hasNext ()) {
// Get next ent ry
DataSource nextEntry = e n t r i e s . next () ;
// Get input con f i g according to content type
InputConf igura t ion i c = new InputConf igura t ion (
nextEntry . getContentType ()) ;
// I n s t a n t i a t e corresponding parse r
Parse r par se r = ge tPa r se r (i c . ge tPa r se r () , nextEntry . getData ()) ;
// Parse content
Data content ;

39

4.3. Usage

i f (” xml ” . equals (i c . getFormat ()))
// XML content
content = parser . parseToXML () ;

else
// Raw content
content = parser . getRawContent () ;

XMLData metadata ;
i f (i c . getProcessMetadata ())

metadata = parser . parseMetaData () ;

// Bui ld a resource with the parsed data . . .
}

The underlying logic will rely on the InputProcessor class. A DataSource instance
will be created with the address of the .chm file and then it will be passed to a an
InputProcessor instance. The rest of the work will be done by process() which will
return a list of Resource instances. It can be presented as a sequence of XQuery ele-
ments, for example:

<resource name= ’ resource1 ’>
<metadata>

. . .
</metadata>
<content>

. . .
</ content>

</ resource>

Of course, the elements <metadata> or <content> can be missing depending on the
input configuration.
When several resources from the database have to be packed into a .chm file and ex-
ported, the process is similar as by the import. Here, however, each resource is passed
to a serializer while the same output stream is used.

4.3.3. Input and Output through a User Interface

As it can be noticed the examples from the previous section are quite general and are
not related to any existing implementation. They serve just to show how the proposed
framework for input and output can be applied. The same is with the user interface –
each XML database exposes in a different way its functionality to the end user. That
is why here we will not go into details but just give some guidelines how the logic for
input and output can be delivered to a regular user – not a developer but one who does
not have a deep knowledge in XML, XQuery and does not have to be familiar with the
internal implementation. In Chapter 5 we will describe how this can be done for an

40

4.4. Conclusion

existing XML database.
The UI should be kept simple and intuitive. It should provide access only to features
which will be of interest to a regular user. For example, it would be useful to control the
data processing and the various parser and serializer options. On the other hand – it is
not necessary to know which parser or serializer class is responsible for the processing.
Furthermore, it is important that the various options are presented in a consistent and
understandable way. For instance, it should be visible for each supported content type
– no matter input or output – what parser and serializer settings are valid. Another
convenient feature would be to add easily new content types for which support was
implemented. It is, however, controversial, if this should be allowed to any regular user
or just to faciliate the work of developers and administrators.

4.4. Conclusion

In this chapter we defined a framework of classes, which can be used to organize the in-
put and output data flow in an XML database. Among its most important advantages are
modularity and separation of concerns. Each component is dedicated to a specific task
and does not depend on the rest of the system. Furthermore, the framework provides
two more “intelligent“ modules for input and output, which based on configurations can
manage the workflow themselves. The proposed solution offers a unified way to control
the data processing in a system and can be used as a blueprint by its design.

41

5. BaseX: Improving the Input and Output

In this chapter we will demonstrate how the above defined framework can be integrated
into an existing XML database, namely BaseX[BAS]. For this purpose we are going to
take a closer look at its current input and output implementation and see what advan-
tages and disadvantages it has. Based on this we will continue with a proposal how the
generic framework can be used to make this functionality more consistent and flexible.

5.1. Preliminaries

5.1.1. Overview

We start with an overview of the input and output in BaseX. In Chapter 3 it was already
presented which data channels exist and which formats are supported by them. A closer
observation of Table 3.3 leads to the conclusion that the GUI, command line, REST and
XML:DB interfaces have a lot in common when it comes to input. The reason for this
is that the actions from the user interface, the REST requests and the XML:DB meth-
ods all call in the end the logic which underlies the commands. The same is true for
WebDAV, too, but due to its nature and partially to the current input and output imple-
mentation in BaseX, it allows only import of XML. Any non-XML data is stored as binary.
Regarding the output, again one and the same functionality is used by these channels
but by XML:DB and WebDAV a limitation comes, which is related to their interface def-
inition. As far as XQuery is concerned, there the flow is different and relies directly on
the XQuery processor within BaseX. Figure 5.1 shows how is generally organized the
input and output. As it can be seen, there are two “main“ data channels, which have to
be considered – the command interface and the XQuery engine. Although the fact that
the command functionality is reusable can be counted as an advantage, there are many
existing inconsistencies which are hidden behind it. In the next sections we will examine
the reasons for them.

42

5.1. Preliminaries

XQuery
Engine

Command Interface

Command
Line

REST
Interface

WebDAVGUI XML:DB

Storage

XQuery
Functions

Figure 5.1.: BaseX Input and Output: Overview

5.1.2. Storage and XDM

Since the ultimate goal of parsing is to bring data to the database-specific XDM repre-
sentation, we start with a few preliminaries on the classes in BaseX which care for the
storage of data and its representation as an XDM instance.
BaseX is able to create both persistent and non-persistent databases. The logic for the
first ones is encapsulated by the class DiskData while for the latter is used MemData.
Data is their generic abstract parent. No matter disk-based or in-memory based, a
database instance is always constructed using a dedicated interface for this purpose,
namely Builder. Here again it can be distinguished between a builder for persistent
databases – DiskBuilder and such for non-persistent ones – MemBuilder. Figure 5.2
gives an overview on the storage classes in BaseX.

Figure 5.2.: BaseX: Storage Classes

43

5.2. Current Implementation

The XQuery Data Model is represented in BaseX with a hierarchy of classes correspond-
ing to the various items. What is more important for our further investigation, however,
is that basically there are two main types of nodes – disk-based and main memory based.
The classes corresponding to them are DBNode and FNode respectively. The XQuery func-
tions in BaseX work internally mainly with FNode, Item and their inheritors(exception
here are the functions which execute database operations). The command interface
usually uses DBNode instances.

Figure 5.3.: BaseX: Nodes

5.2. Current Implementation

5.2.1. Input

5.2.1.1. Data Sources

We start with describing how data arrives in the database. Currently BaseX offers three
types of input – in the form of a byte array, file or directory on a local machine, and a
resource, which can be addressed using an URL. This separation is consistent and has a
lot in common with the examples given in Listings 4.1 and 4.2. However, along with the
necessary logic for retrieving the data, determining its content type and whether it is a
file, an archive or a directory, there is also functionality which does not fit that well with
the main purpose of these classes. Thus, for example, there are methods for copying
a resource, for renaming it, for determining the database name. In order to avoid this
superfluous code we will encapsulate in the relevant DataSource implementations only
what is needed.

44

5.2. Current Implementation

Figure 5.4.: BaseX: Input and Output Classes

5.2.1.2. Parsing

In this section we will have a look at the parsers which are currently available in BaseX.
Figure 5.5 gives an overview of their class hierarchy.

Figure 5.5.: BaseX: Parsers

According to the content type of the parsed resource they can be categorized into XML
parsers and non-XML parsers. BaseX uses altogether three XML parsers – a built-in
one, Java’s SAX parser, which is wrapped by the SAXWRapper class, and a DOM parser
wrapped by DOMWrapper. The first two are used most often. The latter one works
exclusively with DOM instances, which are used only by the XML:DB API. According to
the structure of the parsed resource, i.e. is it a file or is it a collection of files – directory
or archive, there are two parsers – SingleParser and DirParser respectively. As it can
be seen most of the parsers inherit the SingleParser class. This logically leads to the
conclusion that they operate in a common way, which is generally true. What unites
them is the usage of a Builder instance directly in the parsing process. They always
read sequentially the content, which is taken from the input stream of a file (in case
of IOFile) or an HTTP connection (in case of IOUrl), and send events to the builder,

45

5.2. Current Implementation

which itself constructs a Data object corresponding to the XDM representation for the
coming data. Figure 5.6 gives a general overview of this process.

Figure 5.6.: BaseX: Parsing via sending events to a builder

However, not all non-XML parsers implement this event-based approach, which results
in an inconsistency in the overall way data is parsed. Thus, for example, JSONParser
and HTMLParser are not direct descendants of SingleParser and there is a reason for
this. A closer look at their implementation reveals that what they actually do is to first
parse the data, then cache it into a new IOContent instance and finally handle it to the
built-in XML parser in order its builder to construct the XDM internal representation. In
the case of JSONParser the process is even more complicated since first an instance of
ANode is created, which after serialization to XML is passed to the XML parser.

Figure 5.7.: BaseX: JSON parsing in case of database creation

Clearly, using directly the Builder class to parse non-XML data is the better approach.
The reason for this is that it reads the incoming content directly from the input stream
of the source. Thus, parsing large resources cannot cause lack of main memory. A disad-
vantage, which can be avoided by some rethink of the implementation, is that currently
this way of parsing produces DBNode instances while the XQuery functions in BaseX work
mainly with FNode. That is why there are no XQuery functions for pure parsing available
at present, which correspond to the above described parsers. This situation can be rec-
ognized in Table 3.3 where it is visible that the formats supported for input by the GUI,

46

5.2. Current Implementation

the commands and the REST API are not supported in the case of XQuery. Only JSON
makes an exception and the reason for that was explained above. The good about the
JSON parsing approach is that it is more consistent because it uses the JSONConverter

class, which is dedicated only to converting JSON to XML and nothing else. This makes
it more flexible and reusable. However, the disadvantages coming with this are more
complex processing in case of database creation and what is worse – parsed content is
cached which makes main memory a bottleneck.
Now, when we have an idea how operate the parsers for single resources, we can step
one level above in the input process and see how they are actually called. BaseX is able to
work both in local and in client-server mode. In the first case the possible interfaces for
interaction with the system are GUI, command line and XML:DB. All three of them use
the command interface internally when it comes to creating a new database or adding
documents to an existing one. Starting point (except by XML:DB) is the directory parser
DirParser. Figure 5.8 gives a generalized view of the process.

Data
Create an IO

instance
Call DirParser

Call single
parser

End

Figure 5.8.: BaseX: Creating a database in local mode

As it can be seen whenever data enters the database, a corresponding IO instance is cre-
ated which is then passedto a DirParser. The latter one calls the relevant single parser.
One disadvantage of this approach is that although the logic in DirParser is mainly
responsible for traversing a file hierarchy, it is classified as a content parser along with
the single parsers, which process individual files. The result of this is that DirParser
accepts parsing properties for a single content type and thus only collections consisting
of files with one and the same content type can be imported. If other files are present,
they can be stored as raw data. This is a shortcoming because a user cannot import a
directory full of HTML and CSV file at once, for example. First they have to import the
HTML files and then - the CSV or vise versa. One way to improve the current situation
may be to isolate the logic for walking through a file hierarchy in a separate class, which
at least is not classified as a parser. Furthermore, it can be checked right at the beginning
of the input process if the source is a file or directory in order to decide whether to call
directly a corresponding single parser or to use the DirParser.
When BaseX is used in client-server mode there are three ways to communicate with it
– via commands sent through the BaseXClient interface, via REST requests and through
a WebDAV client. The first approach is trivial since with it a user can directly execute
the available commands through a BaseXClient and they result in what was already de-
scribed above. This is not the case with the RESTful API and WebDAV. They also use the
commands in the end but before that some preprocessing steps take place which influ-
ence the further execution. Figure 5.9a shows what are the general steps when sending

47

5.2. Current Implementation

a REST Put request and what happens when the CREATE DB command is executed on
the server.

Data
JSON/CSV/
HTML/Text?

Send
SET PARSER

Send
CREATE DB

End

Header
“Content-Type”

is set?

Send
STORE

yes

yesnono

no

(a) BaseX: REST Put Request

Data

Parse with
SAXWrapper

Read content
Cache content
in IOContent

Pass IOContent
to DirParser

End

XML
Parser?

Get property
PARSER from

db context

no

yes

(b) BaseX: CREATE DB Command

Figure 5.9.: BaseX: Sending a REST PUT request and handling it on the server

An application can make clear what is the content type of the data it sends to the
database server by setting the “Content-Type“ header in the HTTP connection. When
it is set, the REST API first sends a SET PARSER command to the BaseX server in order to
announce what parser must be used further. If this header is not set, it is assumed that
the data is XML and the default XML parser is used. If the header is set but there is no
available parser for the content type, then the data is stored raw in its original format.
One problem caused by this workflow appears when non-XML data is sent to the server
but the “Content-Type“ header is not set. In this case it is assumed that the data is XML
and on the server it is directly passed to the SAXWrapper to handle it. Of course, this
results in an error since this parser expects exclusively XML data. The second problem

48

5.2. Current Implementation

appears when the header is set. It comes from the fact that currently BaseX does not
have a functionality for working with stream data and the only remaining option in such
a scenario is to cache the incoming content in an IOContent instance. Then it can be
passed to the corresponding parser. Again, the same problem occurs as by the HTML
and JSON parsing in local mode – main memory lack in case of large resources.
By WebDAV the behavior is different – whenever a new database is created or a resource
is added to an existing one, it is checked if it is XML. If this is not the case, it is directly
stored as raw content. In BaseX raw files are kept in a system-specific sub-directory.
Their import has no complex logic since no parsing takes place and the data is directly
read from the input stream. This is why this functionality is accessible from all available
interfaces.
The last data channel which remained is XQuery. Currently BaseX does not offer any
special XQuery functions for parsing data with content type different from XML, except
JSON. The reasons for that were already explained above. An exception makes only the
db:add() function, which works with DBNode instances but it is aimed to add documents
to a database and not for pure parsing. In this case the parser to be used can be set in
the prolog of the corresponding XQuery expression via declare option db:parser.

5.2.2. Output

The output in BaseX is organized more consistently in comparison to the input. This can
be observed in Table 3.3 – the output formats supported by XQuery, commands, GUI and
REST API are almost the same. By WebDAV and XML:DB the situation is different but
this is because of their different interface. Figure 5.10 gives an overview of the currently
available serializers.

Figure 5.10.: BaseX: Serializers

The good about them is that they have a common interface, which is defined by the
OutputSerializer class. Furthermore, the logic they encapsulate is organized consis-
tently and handles only the serialization process. This is feasible thanks to the internal
XDM representation in BaseX. In the previous section it was explained that it can be

49

5.2. Current Implementation

distinguished between disk-based and memory-based nodes(DBNode and FNode respec-
tively). They, however, have a common parent – ANode, which provides an abstract
method for serialization. It accepts always a serializer instance as an argument. Thus,
where needed this method is implemented. The result is a common way to serialize both
XML data coming from the database (DBNode) and such which was passed directly to an
XQuery function (FNode and its descendants).

5.2.3. Options

Currently, in BaseX it is possible to use various input and output options. The input
options can be divided into content parsing and directory parsing ones. The first ones
specify what is the content of the incoming data as well as properties referring to the
corresponding parser. The second are settings indicating how to parse the files in a
directory or archive, which is added to a database or from which a new database is cre-
ated. Among these are flag for skipping corrupt files, flag for adding files which are in
sub-archives, etc. The output options in BaseX are available in the form of serialization
parameters. They include not only the standard ones but also such that are specific to
BaseX. When it comes to output, there are two possibilities – either to serialize a doc-
ument or an XQuery result or to export all documents in a database. In both cases the
available serialization parameters can be used to control the process.

GUI

REST
Command

XQuery

process
selected
options

Send
SET

command

process
query
prolog

SET
PARSER
SET

PARSEROPT

query context

database context

compile

set
options

in
parser

options

options

options

options

options

options parsed
data

Figure 5.11.: BaseX: Setting Parser Options

50

5.2. Current Implementation

GUI

REST
SET

SERIALIZER

REST
SET

EXPORTER

REST
query with

query
parameters

process
export
options

Send
SET

EXPORTER

Send
SET

SERIALIZER

SET
SERIALIZER

XQuery
process
query
prolog

SET
EXPORTER

query context

database context

compile

Set options
in

serializer

options

options

options

options

options

options

options

options serialized
data

Figure 5.12.: BaseX: Setting Serializer Options

The input and output options in BaseX can be set in diverse ways depending on the used
channel. Their final destination, however, is always the same – the database context.
From there they are taken and passed to the relevant parsers and serializers, which use
them in the data processing. As it is impossible to specify options through XML:DB
and WebDAV, only the rest three channels are considered – GUI, REST API and XQuery.
Figures 5.11 and 5.12 show how the input and output parameters are managed by them.
In the GUI the user specifies the necessary options and the underlying logic uses the SET

command to set them in the database context. Through the REST API an application
can set parser options using the SET PARSER and SET PARSEROPT commands. In case
of output, again the SET command can be sent directly to the server or the needed
serialization parameters can be set as query parameters and the REST API sends them
via the SET SERIALIZER command to the server. When XQuery functions are executed,
the preferred options can be set in the prolog of the XQuery expression. In that case
the XQuery processor sets them first in the query context and after that, when the query
is compiled, they are set in the database context. The database context always holds
a reference to a Prop instance, which assembles properties used throughout the whole
project. This instance has fields for parser, serializer and exporter options, which are set
in the above described cases.

51

5.3. Improvement

5.3. Improvement

In the previous section we made a short analysis of the current input and output data
flow in BaseX. Both advantages and disadvantages have been found. Here we are going
to see how the existing functionality can be used to implement the generic architecture
presented in Chapter 4.

5.3.1. Input and Output Management

Presently, BaseX offers various options for managing the input and output of data. Some
of them refer to concrete parsers and serializers while others are related particularly
to importing data from directories and archives. All of them can be specified through
almost all available data channels. Figure 5.13 gives an overview how a user can set
diverse input options through the GUI. Although the current approach covers most of
the user’s needs, it is not consistent enough and can be confusing. In this section we will
show how this disadvantage can be eliminated by introducing a completely new way for
manipulating input and output options.

5.3.1.1. Configurations

In Chapter 4 was presented the concept of input and output configurations, which we are
going to apply in BaseX. As it was explained there, the way content types are treated by
input and output can be easily defined using XML. This is a convenience when it comes
to XML databases and XQuery engines because one way to manipulate the content of the
above mentioned XML files is to keep them in a special administrative database within
the system.

In this way they can be easily accessed, queried and updated by using XQuery state-
ments. We will follow this approach in BaseX and will introduce a dedicated system-
specific database called system-config. Four documents will initially always reside in
it:

• input-options.xml specifying how each content type shall be processed and the
corresponding parser

• parser-options.xml specifying the avaialable options for each parser

• output-options.xml specifying how the serialization to a given content type shall
happen and the corresponding serializer

52

5.3. Improvement

• serializer-options.xml specifying the available options for each serializer

(a) General Options (b) CSV Parser Options

(c) JSON Parser Options (d) HTML Parser Options

Figure 5.13.: BaseX: Input and Parsing Options

(a) Global Options
line)

(b) db1 specific options

Figure 5.14.: BaseX: Folder View of system-config

Of course, configuring a content type for a specific database will also be possible. In
this case in the system-config database will be created a version of the corresponding
document starting with the name of the database and holding only the difference with

53

5.3. Improvement

the original one. Figure 5.14 shows a simple example. Thus, BaseX will have a global
configuration represented by the four XML files from above and many database-specific
ones. The global configuration will be applied whenever documents enter a database for
which their content type is not specifically configured.

5.3.1.2. Configuration Management

Having the input and output options in an XML database is quite convenient since they
can be easily manipulated with XQuery. However, an XQuery module which cares only
for configuration-related tasks is even more convenient as it can save a lot of work.
Furthermore, it can be implemented entirely in XQuery. We define such a module for
BaseX. The functions included in it are listed below:

• cfg:list-input-content-types
cfg:list-input-content-types() as element(input)*

This function returns all supported input content types.

• cfg:input-content-type
cfg:input-content-type($content-type as xs:string)
cfg:input-content-type($content-type as xs:string,

$database as xs:string) as

element(input)

This function returns the input options for the content type $content-type in the
global configuration. If a database name is specified, the settings in the database-
specific configuration are returned.

• cfg:parser-options
cfg:parser-options($content-type as xs:string) as

element(parser)

cfg:parser-options($content-type as xs:string,

$database as xs:string)as

element(parser)

This function returns the parser options for $content-type from the global con-
figuration. If a database name is specified, the parser options from the database-
specific configuration are returned.

• cfg:list-output-content-types
cfg:list-output-content-types() as element(output)*

This function returns all supported output content types.

• cfg:output-content-type
cfg:output-content-type($content-type as xs:string)

54

5.3. Improvement

cfg:output-content-type($content-type as xs:string,

$database as xs:string) as

element(output)

This function returns the output options for the content type $content-type in the
global configuration. If a database name is specified, the settings in the database-
specific configuration are returned.

• cfg:serializer-options
cfg:serializer-options($content-type as xs:string) as

element(serializer)

cfg:serializer-options($content-type as xs:string,

$database as xs:string)as

element(serializer)

This function returns the global serializer options for $content-type. If a database
name is specified, the serializer options from the database-specific configuration
are returned.

Apart from offering an intuitive way to manage the input and output configurations, the
defined XQuery module can be easily used through most of the other data channels in
BaseX since the command interface is able to communicate with the XQuery engine via
the XQUERY command. It will not be possible to control the options through WebDAV
or XML:DB because their interfaces do not allow such actions but the important thing
is that whenever documents enter a database through one of them, the global or the
corresponding database-specific configuration will be applied. This is possible as now
all data channels work with a DataSource instance which content type can be recognized
and based on it the relevant configuration can be detected as shown on Figure 4.7.
What may be interesting is how the input, output, parser and serialization options will be
presented and managed by the GUI in BaseX once the above concept is applied. Figure
5.14 shows some sample mockups.

55

5.3. Improvement

(a) Input Options (b) Zip/Directory Parser

(c) Output Options (d) CSV Serializer

Figure 5.15.: BaseX: New Input and Output Options

The current BaseX GUI can be easily extended with a menu for configuring the global
input and output options. The Options Button against each input/output content type
navigates to the corresponding parser/serializer options. Of course, this visualization
is not the most optimal one since it will become quite inconvenient if a wide range of
formats is supported. Maybe the easiest solution to this problem is to add a search field
which will allow to look for and directly navigate to a concrete content type. In case
of database-specific configuration the very same visualization can be used but it will
be accessible through an additional tab Configuration in the dialog for creating a new
database. Whenever the settings for a given content type are updated in the GUI, the
corresponding XQuery function from the above module will be called to retrieve the rele-
vant record from the configuration and the changes will be persisted in the system-config
database using an XQuery update statement on the returned record.
It is important to note that the new way for controlling the data processing in BaseX
will not replace or eliminate the already existing one. It can be viewed more as a useful
addition to it. Specifying the options through the GUI, command line, XQuery prolog or
REST will still be possible but it will make sense to use it only when it is explicitly stated
that no present configuration shall be used. In the GUI this can be done as shown on
Figure 5.16. “Underneath“, the three settings can be managed by the SET command and
three new corresponding options for them. Thus, they can be also controlled through

56

5.3. Improvement

the REST API.

(a) Use database configuration (b) Do not use any configuration

Figure 5.16.: BaseX: Configuration Usage

As it was explained earlier, no matter how the parser and serializer options are specified,
they arrive at the end in the Prop instance in the database context from where they can
be reused. This approach has a good workflow but is not consistent enough because
these options are not isolated in any way from the rest of the options used in the system.
Apart from them the Prop class holds also database-specific ones, operating system-
specific, etc. The new way for managing options will eliminate this inconsistency. The
database context will be extended with two more fields corresponding to the input and
output options which are to be used in the current session. These will be instances of the
InputConfiguration and OutputConfiguration classes. They will be initialized only
in case it is specified that no existing configuration shall be used. Otherwise, the settings
will be read dynamically from the configuration.

5.3.2. Content and Metadata

Currently, BaseX does not support separate storage of metadata and content. In previous
versions there were parsers for specific metadata containers such as ID3 and EXIF but
at that time binary data could not be kept in the database and thus the content of such
files was stored on the file system, “outside“ the database. In this section we are going to
see how we can use BaseX in its current state to provide also functionality for working
separately with metadata and content.

57

5.3. Improvement

5.3.2.1. Storage

BaseX stores binary content as raw in a special sub-directory, called raw, which resides
within each database. Clearly if metadata is to be stored, then it shall be kept as XML
since otherwise it is not useful. A natural question which arises when we talk about
separation of content from metadata is how will be kept the relation between them once
they are stored in the XML database or in other words how will it be known which
metadata passes to which content. Since we deal with two types of data – such that can
be converted to XML and such that cannot, the way metadata is maintained for them is
also different. When it comes to XML, BaseX is flexible and allows things from which
we can benefit. Thus, for example, presently it is able to store more than one root node
under a document node and this solves half of our problem. When data is to be saved as
XML, its metadata can be kept as a second root node under the corresponding document
node. Thus for each document there will be two root nodes – one representing the
content and another one – for the metadata. In case of binary data, only the metadata
node will be present. The content itself will be stored in the raw sub-directory but with
exactly the same path as the corresponding XML document holding the metadata. As
in the database cannot reside two XML documents with one and the same path ,as well
as in a directory, the path will serve as a key for finding matching binary content and
metadata. Figure 5.17 shows how content and metadata will be stored in the three
different cases allowed by the input configuration.

file.csv

metadata content

doc()

(a) Process as: XML

file.jpeg

doc()

metadata

raw content: raw/file.jpeg

(b) Process as: raw

file.pdf

metadata content

raw content: raw/test.pdf

doc()

(c) Process as: mixed

Figure 5.17.: BaseX: Content and Metadata

5.3.2.2. Metadata

The notion of metadata can have sometimes an ambiguous meaning since diverse prop-
erties can be treated as metadata. Furthermore, some files have specific metadata con-
tainers while by others it can be determined based on analysis of the content. Here we
are going to define how a metadata element shall look like in BaseX.

58

5.3. Improvement

Generally metadata can be classified in two types – such that is file system-specific and
each file, no matter what is its content type, can have it. Date of last modification or
size are examples for such data. The second type is the data which is determined by the
content type. Thus, for instance, in a JPEG file the metadata is in EXIF format and con-
tains such information as model of the used camera, matrix sensitivity, focal length, etc.
Based on this division, we can define a simple structure for the metadata element. First,
it shall have an attribute for the content type of the data. Second, there must be a child
holding file-system information. Let us call it fs-info. Last, the content type-related
metadata must be listed as key-value pairs where key will be the name of the element
and value – its text value. Thus, for example, the metadata element for a JPEG file will
have the following structure:

<metadata content−type= ’ image/ jpeg ’>
< f s i n f o>
<s i z e>902KiB</ s i z e>
<l a s t−modif ied>2011−05−18</ l a s t−modif ied>
<o r i g i n a l−path>/home/ p i c t u r e s / p i c . jpeg</ o r i g i n a l−path>

</ fs−i n f o>
<make>EASTMAN KODAK COMPANY</make>
<model>KODAK DX6490 ZOOM DIGITAL CAMERA</model>
<l ens />
<aper ture>F2 .8</ aper ture>
<f o c a l>6.3mm</ f o c a l>
< s e n s i t i v i t y>140/1ISO</ s e n s i t i v i t y>

</metadata>

Content Type Metadata
application/xml encoding

text/plain
encoding, language,

byte order mark, end of line

text/csv
header, end of line,

record delimiter, column separator

application/pdf
various document,
properties such as

author, title, creator,etc.
application/vnd.openxmlformats-

officedocument.
wordprocessingml.document(docx)

template, pages,
words, paragraphs

audio/mp3
ID3 tags such as,

artist, year, album, etc.

video/avi
RIFF tags such as

genre, location, starring, etc.

Table 5.1.: Examples for metadata

Table 5.1 contains some more examples on metadata. For some content types metadata
is clearly defined and kept in a specific container, e.g. ID3 tags by MP3, RIFF tags by AVI

59

5.3. Improvement

and the folder docProps in case of docx files. In other cases determining what is metadata
is quite subjective and can strongly depend on the user’s and application’s needs. Thus,
for example, by XML one can treat the encoding as metadata if it is necessary later by
the serialization of this data to their original encoding. By CSV the header line can be
considered metadata and kept separately in order to prevent a user from treating it as
content.

5.3.3. Input

5.3.3.1. Data Sources

In section 5.2.1.1 we acquainted ourselves with the three classes in BaseX responsible
for the input and output of data – IOFile, IOUrl and IOContent. For now they are
able to do most of the necessary work when it comes to input but a drawback which
was observed is that currently they do not offer a way to work directly with stream data
unless it is cached. This becomes even a bigger problem when we have to implement the
generic architecture because the parsers in it work with an input stream. Since the IO

class delivers functionality which is used in other places in the project (for example when
building a database) except within the parsers, it is not a good option to work directly
with java.io.InputStream within the new parsers because needed information will not
be present. Thus, the logical solution of the problem is to add one more inheritor to the
IO class in BaseX which works only with stream data. Let us call it IOStream.
With the IOStream class the picture is already complete and we can continue with the
real part of our work, namely the implementation of DataSource. This will not be a
difficult task because most of the needed functionality is present. Thus, the simplest
approach would be to create a class encapsulating the logic of the classes for input
and output, which is necessary to implement the methods of DataSource. The missing
functionality will have to be added. Table 5.2 and Figure 5.18 show how the existing
methods of the IO inheritors can be reused and how the new class hierarchy for input
and output will look like.

DataSource Method IO Method
getContentType() to be implemented

getName() name()

getData() inputStream()

getDataSize() to be implemented
getEntries() to be implemented
isCollection() isDir(), isArchive()

Table 5.2.: DataSource Methods vs. IO Methods

60

5.3. Improvement

Figure 5.18.: BaseX: DataSource Implementation

5.3.3.2. Parsing

The next step is to see how the existing parsing functionality in BaseX has to be modi-
fied so that it can be applicable in the generic architecture. As it was already presented
most of the parsers work hand-in-hand with a Builder instance by sending events to it.
Although this is a good approach, it makes the Parser and Builder classes too depen-
dent on each other. Figure 5.19 shows this dependency more clearly. As it can be seen
a Builder instance is always created with a Parser although the parser is the one that
uses the builder to convert data to XML. The problem appears when it comes to import-
ing data from “complex“ data sources, i.e. archives and directories. In this case, as it
was shown in Figure 4.10, for each data source will be instantiated the corresponding
parser according to its content type. In case of directories/archives with too many files
with diverse formats this will result in creating too many Data instances (one for each
file) which may lead to lack of main memory. However, with the current implementa-
tion this is not a problem since a DirParser instance uses always just one builder and
consequently creates just one Data instance for all included files.

Figure 5.19.: BaseX: Builder-Parser Relationship

Thus our task is to adapt the existing logic in such a way that we can avoid this problem
when parsing directories and archives with the new input functionality. After a closer
look at the implementation of Builder it becomes clear that currently it is responsible
for two main tasks– preparing and finalizing the internal representation and listening to

61

5.3. Improvement

events coming from a parser. For the first task it needs information about the input which
can be taken only from the IO instance referenced by the parser. The second one is abso-
lutely independent from the parser. This leads to the conclusion that a Builder can be
created using only an IO instance. Furthermore, since a parser always uses only the logic
for event listening, it can be decoupled from the Builder class and called separately. In
that way we can achieve a more flexible and modular implementation, which will be
able to serve our needs. Figure 5.20 shows the corresponding UML diagram. As it can
be seen, there is already a dedicated class for event listening – ParserListener. Since
the events are interpreted in a different way when a disk-based and when a memory-
based database is created, there are two separate listeners for each of the cases. What
is more important, however, is that a Builder now can take the necessary information
directly from an IO instance and does not need a Parser to be instantiated. All parsers
now will send events not to a builder but to an event listener.
We can continue with the parsers themselves. Since the current ones in BaseX work
quite well and are consistent enough, the only thing we have to consider is how to reuse
them by the implementation of the generic architecture. This does not appear to be a
challenge when we compare what a BaseX parser needs in order to function properly
and what the generic parser from Chapter 4 needs for its goals. Both have something in
common and this is the input. Since in BaseX the input is represented by an IO instance,
this will be the first argument in the constructor for the abstract Parser class. Two more
things necessary for a BaseX parser are parsing properties, which have to be applied and
a listener, which will listen to the events sent from the parser and write in the corre-
sponding database. The parsing logic is already present and can be reused within the
parseContentAsXml() method. As far as the metadata is concerned, it will be parsed to
XML, too. Raw content will always be returned as an input stream from where it could
be directly read. Based on these reflections the new parser hierarchy in BaseX will look
like as shown on Figure 5.21.

Figure 5.20.: BaseX: New Builder-Parser Relationship

62

5.3. Improvement

Figure 5.21.: BaseX: New parser hierarchy

With the DataSource and Parser implementations now the input functionality in BaseX
has a more ordered and logical flow – there is unified access to data sources no matter
what is their nature – a single file, a directory or a stream, and furthermore – parsers
are dedicated to one single task, namely the conversion of non-XML data to XML. One
last feature that is needed in order to achieve the architecture from Chapter 4 is the
“automated behavior“ mentioned there, which is delivered by the InputProcessor class.
Since it is based on the interplay between data sources and parsers, it can be already
realized in BaseX as shown with the flowcharts on Figure 4.9 and Figure 4.10. Its UML
diagram is depicted on Figure 5.22.

Figure 5.22.: BaseX: Class InputProcessor

As it can be seen, InputProcessor is always instantiated with an IODataSource and
a Builder. The latter is needed to prepare and finalize the database instance and
to provide a ParserListener, which has to be passed to the corresponding parsers.
setInputConfig() is used to set an input configuration containing input options set by
a user or an application. In case it is stated that an already existing configuration shall
be used, then this method is not called. The process() method does the actual data pro-
cessing. Based on the input configuration, it decides how to process it – as XML, as raw
or as mixed and what to parse – content, metadata or both. Once this is determined, the
relevant parser is instantiated and the corresponding methods are called. Figure 5.23
summarizes the new workflow within the CREATE DB command by processing of a single
file.

63

5.3. Improvement

yes

no

Data Create a DataSource(ds)
using io

Use
Config?

contType :=
ds.getContentType()

Create
InputConfiguration(ic)

using contType

Set user/app input and
parser options in ic

Set ic in
database context

Create an IO(io) Create a Builder(b)
Create a

 InputProcessor(ip)
using ds and b

ip.setInputConfig(ic) ip.process()

global
config?

ip.setDatabase(db)

End

no

yes

Figure 5.23.: BaseX: New CREATE DB implementation

The process() method of InputProcessor returns Resource instances, which hold the
already parsed data. Since this functionality shall be used also by the XQuery engine, it
is essential to get the metadata and XML content from a Resource in a form acceptable
by the XQuery implementation, too. This is why the methods getXMLContent() and
getMetadata() will return an instance of ANode.
With this last piece from the generic input architecture, it is possible to extend BaseX
even with a more general XQuery function for input parsing, similar to the resource()

function mentioned in Chapter 4. In that way the functionality shown on Figure 5.23
will be applicable in all available input “areas“ in BaseX. Furthermore, since we have
achieved modularity by isolating the parsing logic, now it is possible also to define finer
granulated XQuery functions for parsing specific content types, e.g. parse-csv() for
CSV data or parse-html() for HTML data. This was not possible with the previous state
of the input functionality.

5.3.4. Output

In the end we are going to discuss how the output in BaseX can be modified in order
to be in accordance with the generic architecture. In this section we will explain some
changes which shall be introduced in the current serializer classes and we will concen-

64

5.3. Improvement

trate especially on the improvement of the EXPORT command.

5.3.4.1. Serializers

A closer look at the current serialization logic in BaseX shows that the changes which
it has to underlie in order to be applicable in the context of the generic framework
are not that many. Presently, each serializer class is initialized with an output stream
and serialization properties. This corresponds to some extent to the way a generic se-
rializer is created. By the latter, however, always a Resource instance is passed as a
parameter. The main purpose of the Resource class is to serve as a convenient encap-
sulation of content and metadata after they have been parsed. Such an encapsulation
is needed in order to maintain the relation between these two. In BaseX, however, we
can leave this representation aside because content and metadata stay always together
under one and the same document node or in case of raw data – the path to metadata
coincides with this to content. Thus, the only thing which has to be done is to add
two new abstract methods to the OutputSerializer class – serializeOnlyContent()

and serializeContentWithMetadata(). They will accept an ANode instance as an
argument and will be implemented by the diverse specific serializers. The logic in
serializeOnlyContent is straightforward – either the serialize() method of ANode is
called in case of XML content or the corresponding binary file is read in case of raw con-
tent. The workflow in serializeContentWithMetadata() is depicted on Figure 5.24.

has metadata
child?

yes

no

no yes

read raw file

ANode serialize metadata

has content
child?

serialize content
check subdirectory

raw

raw file with
same path?

synchronize
metadata and

content

write in output
stream

End

yes

no

Figure 5.24.: BaseX: serializeContentAndMetadata()

65

5.3. Improvement

5.3.4.2. Serialization and Export

Currently in BaseX there are two ways to output data – by serializing it and by exporting
it. Serialization can be applied both on data stored in the database and on data which is
passed to an XQuery function as an XML fragment, for instance. Apart from the standard
serialization parameters, BaseX provides its own specific, too. Especially the method pa-
rameter is extended with additional values such as JSON and raw. Analogous to the
parser options, the serializer parameters can be set either by the SET SERIALIZER com-
mand or in the prolog of an XQuery expression in case the usage of an existing output
configuration is not needed. Another possible way is to provide them as an argument
either to fn:serialize() or to file:write(). Whenever an output configuration is
to be used, the output options and serialization parameters will be read from it. The
behavior is similar to the one explained for the input.
The second way to output data is to use the EXPORT command. It allows to export all
resources of a database at once. Although this approach is convenient, it is not flexible
enough. The reason for this is that all documents from a database are exported to one
and the same format, which is restricted to the values available for the method serial-
ization parameter. Currently it is not possible to export a single document or to export
documents to their original content type. This comes from the fact that until now the
original format of data was not stored in any way. With the new output processing, this
can be realized. The component which will care for this work is the OutputProcessor

class. Its UML diagram is shown on Figure 5.26.

Figure 5.25.: BaseX: Class OutputProcessor

As it can be seen OutputProcessor is always instantiated with a list of ANode instances
and an output stream where the result from their serialization will be written. The
setOutputConfig() method can be used to set an output configuration, which contains
output and serializer options defined by a user or an application. If it is not used,
the process() method reads directly the existing configuration for the target content
type and uses the options from it. In order OutputProcessor to be usable within the
EXPORT command, its current implementation has to be a little modified. Presently,
when a user wants to export the resources from a database, it is iterated over the pre
values of the document nodes within it and for each one is called the node() method
of the corresponding serializer. Binary resources are read from the raw sub-directory
and written directly into the output stream. This functionality is replaced now with the

66

5.3. Improvement

process() method of OutputProcessor. The flowchart on Figure 5.26 shows how it
works for a single ANode instance.

ANode(node)
Has metadata

child?

Orig. content
type set

in metadata?

origType :=
@content-type

origType :=
application/xml

outputConfig
is initial?

outputConfig.
contentType =

origType?

Read outputConfig
from db system-config

targetType :=
origType

Read serializer(s) from
outputConfig

targetType :=
outputConfig.contentType

Instantiate s
outputConfig.
onlyContent?

s.serializeOnlyContent(node)

s.serializeContentWith
Metadata(node)

End

yes yes

no no

yes

no

yesno

yes

no

Figure 5.26.: BaseX: Exporting a single resource

The documents are first collected into a list of ANode instances and after that this list, to-
gether with the target output stream, are passed to the constructor of OutputProcessor.
If it is specified that no output configuration must be used, the one which is initialized

67

5.4. Conclusion

with the user parameters is read from the database context and set via the setOutputConfig()
method. Otherwise, it is proceeded with the next step, namely calling the process()

method, which takes care for the rest of the export. The EXPORT command is now able to
output the resources from a database in their original format. Of course, this is possible
only when this format is present in the metadata. Otherwise, application/xml is used as
a default output format. Furthermore, the command can be easily enhanced to allow
export of single resources identified by their database path.

5.4. Conclusion

In this chapter we demonstrated how the proposed generic framework can be applied in
an existing XML database. As a result the input and output in BaseX have been improved.
We introduced a completely new approach for controlling the data processing. Since it is
entirely based on XML and XQuery, BaseX does not need to be extended with additional
logic in order to support it. Another new feature is the separate handling of content and
metadata. It brings more flexibility to the existing functionality and expands the usage
scenarios for BaseX. Last but not least, parsers and serializers have now clearly defined
interfaces and adding support for new content types is straightforward. Furthermore, the
input and output processor classes offer a convenient way to handle data independent
of its format.

68

6. Future Work

Purpose of the generic architecture for input and output is to propose a modular archi-
tecture for data processing within an XML database. The aimed separation of concerns
is essential not only to provide a clear workflow and flexibility. It also opens new doors
for future improvements. Here we are going to discuss two of them.

6.1. Streamable Data Processing

In Chapter 4 the class InputProcessor was introduced, which takes a DataSource as
input and parses it according to its content type. The result is always a list of Resource
instances encapsulating the parsed metadata and content. By this approach the resulting
Resource instance always holds the whole parsed document. In many cases, however,
not the entire data is needed but just pieces of it. Thus, for example, a user may want to
iterate over the records in a CSV file until they find such that meets a certain predicate.
In this case it will suffice to parse just a single record per iteration but not the whole file
at the beginning. This brings the requirement for stream-wise processing of data. The
current model of the generic architecture for input and output does not allow this. It,
however, can be modified in such a way to make it possible. The first component, which
has to be taken into account, is the Parser abstract class. It has to be changed in such a
way that it provides an iterative parsing of data. For example, there can be two methods
– hasNext(), which checks if there is a next record and if yes – parses it, and getNext(),
which returns the next record. The second component that has to be adapted to these
changes is the Resource class. It can hold a reference to a corresponding parser instance
and instead of the two methods for getting the whole parsed metadata and content, it
can have two new ones returning iterators for stream-wise reading of metadata and con-
tent – getMetadataIterator() and getContentIterator(). With these modifications,
the architecture will allow parsing of data on demand. It will not be needed to process
a whole document when just parts of it are actually needed.

69

6.2. Relational Databases

6.2. Relational Databases

The framework proposed in this thesis is designed to use exclusively files and streams as
data sources. Another large source of information, which was not discussed until now,
are the relational databases. The reason for this is that they have other characteristics
and their content requires quite a different approach to be read and imported into an
XML database. However, the reflections on streamable data processing in the previous
section throw some light on the subject. The data in a relational database is organized
in tables and when retrieved it is returned as a sequence of rows from one or many
tables. This is what makes it incomparable to reading data from files. Nonetheless, if an
XML database supports streamwise reading of data, parsing the records from a relational
database to a specific XML representation can be done as explained above. For instance,
a dedicated table parser may return a parsed entry each time its getNext() method is
called. In that way despite the different nature of relational data, it will be treated in
the same way as the data coming from other data sources.

70

7. Conclusion

Finding a unified way to organize the input and output in an XML database can be a chal-
lenging task. In this master thesis we proved that in spite of this, it is achievable. We
started with three major use cases, which outline the requirements for generalized data
processing. In Chapter 3 their coverage in several existing XML databases was investi-
gated and two main conclusions were met. First, input and output are often inconsistent
with one another – data can enter a database in one format through one channel but
cannot leave it in the same format through the same channel. Second, in most cases a
user has little or no control on data processing.

Based on these observations, in Chapter 4 we defined a generic framework that can
be used as a model by the design of data input and output in an XML database. The
benefits it brings are consistency, modularity, flexibility, easy enhancement. Adding sup-
port for new input and output formats has a clear workflow. The separate parsers and
serializers can be used individually as well as through more general processors which
are able to orchestrate them. The latter owe their “intelligence“ to the presence of input
and output configurations pointing the rules for data processing. These rules can be
easily managed by the end users and applications.

In Chapter 5 we described how the proposed framework can be integrated in BaseX.
Two new features were introduced – management of the input and output options based
on configurations kept in an administrative database, and separated handling of con-
tent and metadata. The existing parsers and serializers were remodeled in order to be
more consistent and reusable. Consequently, the existing input and output functionality
has become more structured and easier to expand. As a final result, BaseX meets the
requirements for the three use cases defined at the beginning of our work.

71

List of Figures

List of Figures

2.1. Use Case Diagram . 4

4.1. Input Data Flow . 17
4.2. Output Data Flow . 18
4.3. Interface DataSource . 19
4.4. Abstract Class Parser . 21
4.5. Class Resource . 22
4.6. Class InputConfiguration . 24
4.7. InputConfiguration Initialization . 25
4.8. Class InputProcessor . 25
4.9. Process a single file . 26
4.10.Process a directory or archive . 27
4.11.Abstract Class Serializer . 28
4.12.Class OutputConfiguration . 30
4.13.Class OutputProcessor . 30
4.14.Output processing with the OutputProcessor class 31

5.1. BaseX Input and Output: Overview . 43
5.2. BaseX: Storage Classes . 43
5.3. BaseX: Nodes . 44
5.4. BaseX: Input and Output Classes . 45
5.5. BaseX: Parsers . 45
5.6. BaseX: Parsing via sending events to a builder 46
5.7. BaseX: JSON parsing in case of database creation 46
5.8. BaseX: Creating a database in local mode 47
5.9. BaseX: Sending a REST PUT request and handling it on the server 48
5.10.BaseX: Serializers . 49
5.11.BaseX: Setting Parser Options . 50
5.12.BaseX: Setting Serializer Options . 51
5.13.BaseX: Input and Parsing Options . 53
5.14.BaseX: Folder View of system-config . 53
5.15.BaseX: New Input and Output Options . 56
5.16.BaseX: Configuration Usage . 57
5.17.BaseX: Content and Metadata . 58
5.18.BaseX: DataSource Implementation . 61
5.19.BaseX: Builder-Parser Relationship . 61

72

List of Figures

5.20.BaseX: New Builder-Parser Relationship 62
5.21.BaseX: New parser hierarchy . 63
5.22.BaseX: Class InputProcessor . 63
5.23.BaseX: New CREATE DB implementation 64
5.24.BaseX: serializeContentAndMetadata() 65
5.25.BaseX: Class OutputProcessor . 66
5.26.BaseX: Exporting a single resource . 67

A.1. XML Schema: Input Options . 76
A.2. XML Schema: Parser Options . 76
A.3. XML Schema: Output Options . 77
A.4. XML Schema: Serializer Options . 77

73

List of Tables

List of Tables

3.1. Qizx 4.4: Input/Output . 8
3.2. eXist 2.0: Input/Output . 10
3.3. BaseX 7.1.1: Input/Output . 14

5.1. Examples for metadata . 59
5.2. DataSource Methods vs. IO Methods . 60

74

Listings

Listings

4.1. HttpDataSource.java . 19
4.2. LocalDataSource.java . 20
4.3. Storing an HTML resource . 35
4.4. Exporting XML as HTML to a file . 37
4.5. Importing a .chm file . 39

75

A. Appendix

Figure A.1.: XML Schema: Input Options

Figure A.2.: XML Schema: Parser Options

76

Figure A.3.: XML Schema: Output Options

Figure A.4.: XML Schema: Serializer Options

77

Bibliography

Bibliography

[BAS] BaseX. http://basex.org/.

[BBB+09] Roger Bamford, Vinayak Borkar, Matthias Brantner, Peter M. Fischer, Daniela
Florescu, David Graf, Donald Kossmann, Tim Kraska, Dan Muresan, Sorin
Nasoi, and Markos Zacharioudakis. XQuery Reloaded. Proc. VLDB Endow.,
2(2):2, August 2009.

[BCF+] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language.

[Boua] Ronald Bourret. Going native: Use cases for native XML databases.

[Boub] Ronald Bourret. XML and Databases.

[EXIa] eXist. Content Extraction Module. http://exist-
db.org/apps/wiki/blogs/eXist/ContentExtraction.

[EXIb] exist-db. http://exist-db.org/exist/index.xml.

[FIL] EXPath File Module. http://expath.org/spec/file.

[HTT] EXPath HTTP Module. http://expath.org/modules/http-client.

[MLA] MarkLogic Application Developer’s Guide.

[MLC] Mark Logic Content Processing Framework Guide.

[MLI] MarkLogic Information Studio Developer’s Guide.

[MOD] Modular Architecture. http://www.webopedia.com/TERM/M/modular architecture.html.

[QIZa] Qizx. http://www.xmlmind.com/qizx/.

[QIZb] Qizx Product Description. http://www.xmlmind.com/qizx/product.html.

78

Bibliography

[SQL] EXPath SQL Module. http://expath.org/spec/sql.

[XDM] XQuery 1.0 and XPath 2.0 Data Model (XDM).

[XQA] Five Practical XQuery Applications. http://www.devx.com/xml/Article/15618.

[XQF] XQuery 1.0 and XPath 2.0 Functions and Operators.
http://www.w3.org/TR/xpath-functions.

[XQS] XSLT 2.0 and XQuery 1.0 Serialization. http://www.w3.org/TR/xslt-xquery-
serialization/.

[ZOR] Zorba xsl-fo module. http://www.zorba-
xquery.com/html/modules/zorba/data-formatting/xsl-fo.

79

	Abstract
	Introduction
	Motivation
	Overview

	Use Cases
	Actors
	Storing and querying document-centric documents
	Application Development
	Extending the Input and Output Functionality

	Existing Solutions
	Qizx
	eXist-db
	MarkLogic
	Zorba
	BaseX
	Conclusion

	Generic Architecture for Input and Output
	Requirements
	Architecture
	Data Flow
	Input
	Output

	Usage
	Extending the Input and Output Functionality
	Application Development
	Input and Output through a User Interface

	Conclusion

	BaseX: Improving the Input and Output
	Preliminaries
	Overview
	Storage and XDM

	Current Implementation
	Input
	Output
	Options

	Improvement
	Input and Output Management
	Content and Metadata
	Input
	Output

	Conclusion

	Future Work
	Streamable Data Processing
	Relational Databases

	Conclusion
	Appendix

