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Abstract
Originally developed as a query language for XML databases,
XQuery has evolved into a complete functional programming lan-
guage. In order to unlock all optimization opportunities, XQuery
processors therefore need to combine traditional query optimiza-
tion with techniques used in optimizing compilers. In this paper,
we discuss how the well-known technique of function inlining can
be applied to XQuery. We present an implementation of function
inlining based on the query processor of BaseX, an open-source
XML database. Finally, a detailed quantitative evaluation demon-
strates that the performance benefits obtained by blending compiler
and query optimizer techniques surpass results from any one single
technique.

Categories and Subject Descriptors H.2.4 [Database Manage-
ment]: Systems—Query processing; H.2.3 [Database Manage-
ment]: Languages—Query languages; D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords function inlining, query optimization, XML databases

1. Introduction
XQuery (XML Query Language) is a language designed to retrieve,
navigate, and generate XML documents. In its first version, XQuery
was mainly a query language for XML data, which extended
the XPath language used to navigate XML documents. Its most
prominent language construct, the FLWOR expression (for, let,
where, order by, and return), has been inspired by the SQL
SELECT statement, even though its semantics are order-preserving.
XQuery 1.0 also included function declarations and support for
library modules, making it feasible to use XQuery as a general-
purpose programming language. The language specification defined
the language itself as well as the standard library to be purely
functional, i.e., not having any perceivable side effects during
evaluation of a query. Other examples of this class of programming
languages are HASKELL [7] and CLEAN [4].

In XQuery 3.0 [8, 13], function items, i.e., functions that can be
passed around as values, bound to variables and processed by higher-
order functions, were added. The concept was first made popular in
functional and dynamic languages (e.g., LISP, HASKELL, PYTHON)
and later also made its way into static, imperative languages such as

C# and JAVA. At the same time, FLWOR expressions were extended
significantly. Additional clauses were introduced (e.g., window [3])
and the previously rigid ordering between clauses (e.g., order by
only directly before return) was loosened. Together, these exten-
sions to XQuery significantly strengthened non-database uses cases.
For example, XQuery is increasingly used as a programming lan-
guage for building REST services and web applications [11].

Higher-order functions play an important role in these bigger
XQuery code bases and their more complex logic. As with any
(functional) programming language, higher-order functions can also
be used in XQuery to abstract over control flow. Additionally, the
ability to build arbitrary efficient functional data structures [9]
using higher-order functions is particularly important in XQuery.
While the Candidate Recommendation [12] for the next version of
the language contains map and array data structures, the current
standard lacks variety in data structures. A well-optimized compiler
for XQuery should support this programming style and rewrite
abstracted code to achieve similar performance to non-abstracted
code typical for pure query languages.

In this paper, we focus on the well-known optimization technique
of function inlining. We present how function inlining can be
applied to XQuery and show that it has the expected effect when
integrated into an XQuery processor. More importantly, however,
we demonstrate that the interplay of compiler and query optimizer
techniques can yield a performance benefit that surpasses any one
of these techniques on their own. Specifically, this paper makes the
following contributions to the state of the art.

1. Application of the well-known technique of function inlining to
the XQuery 3.0 language (Section 2).

2. Implementation of function inlining for XQuery in a native XML
database that is used productively (Section 3).

3. Experimental evaluation that quantifies the benefits of combining
function inlining with query optimization (Section 3).

Section 4 discusses related work, whereas concluding remarks are
given in Section 5.

2. Function Inlining in XQuery 3.0
Relying heavily on functions and function application to structure
programs and to keep their size manageable can lead to significantly
slower code. The most obvious additional cost is the function call
itself and the associated type checks of arguments and return value.
Another (and often much more important) cause of performance loss
is the optimizer’s inability to “look through” the function call into
the function’s implementation. Since typical optimization algorithms
work by matching and rewriting local patterns in a program’s syntax
tree, introducing additional levels of abstraction can completely
disable crucial optimizations. Finally, even if the optimizer can
access the function’s implementation through the function call, it
cannot safely rewrite the function body using information available
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at the call site because that information can be different for other
calls to the same function. An optimizer should therefore be able to
replace a function call with the function’s implementation whenever
that is possible and desirable. This rewriting is called inlining and is
well-known and widely implemented in compilers for any languages
having functions or a similar abstraction mechanism.

Implementing inlining in XQuery 3.0 is much more complex than
before because of the introduction of function items. While many
languages have both anonymous functions and inlining optimizers,
they are typically either strongly typed (which makes identifying
recursive anonymous functions easier) or provide only basic support
of inlining, which leaves out many opportunities because they cannot
be proven as safe. In this section, we introduce the different types of
functions supported by XQuery 3.0. For each type, we discuss how
and under which conditions it can be inlined.

2.1 Static Functions
Static functions that can be addressed by name are the most common
type of functions in programming languages. In XQuery 3.0, they
are defined by the declare function statement and are the most
straightforward to inline. Since XQuery does not support ad-hoc
polymorphism, each function call is associated with exactly one
function implementation.

As in other programming languages, functions in XQuery can be
recursive, i.e., there is a chain of function calls that starts inside the
function’s body and leads to the same function being called again.
Both self-recursive and mutually recursive calls can occur and need
to be detected when inlining functions, as failure to do so will result
in an infinite inlining loop. In order to avoid non-termination, we
apply the approach of Peyton Jones and Marlow [10] to XQuery.
Following this approach, we create the dependency graph of the
program. A function is recursive iff it is part of a cycle in the
dependency graph. In order to obtain an acyclic graph, a subset of
function calls that are not inlined, so-called loop breakers, is chosen.
Many heuristics for choosing loop breakers have been proposed [10],
e.g., breaking the most cycles, having code structure that would
not profit from inlining, and code size. Currently, we use a simple
scheme that favors small functions with few calls for inlining.

2.2 Function Items
Inlining XQuery function items is more challenging. As the function
actually called at a call site is only determined at run-time, it is
often not possible to decide what to inline. Additionally, recursion is
harder to detect than in the case of static functions. While function
items are anonymous and can thus not call themselves by name
from inside their function body, they can take a self-reference (even
nested in other data) as a parameter and call themselves through
that. Such recursion is not only hard to detect syntactically, but
impossible to decide at compile time (cf. halting problem). Consider
for example the following XQuery expression.

let $f :=
function($f, $n) {
if($n <= 0) then 1 else $n * $f($f, $n - 1) }

return $f($f, 42)

Even though the function item bound to $f is by nature non-
recursive and only uses values given to it as arguments, the com-
putation uses recursion. Therefore, applying the rules described in
Section 2.1 would once again lead to non-termination. A simple
approach to preventing such inlining loops is the use of heuristics
to decide whether a function item can safely be inlined or not. For
example, a function item that does not contain any function call
cannot lead to an infinite loop because inlining it reduces the overall
number of function calls in the program, so the inliner stops when no
calls are left. It is also safe to inline function items that do not take

arguments that could contain function items. Finally, function items
that do not use their arguments are another obviously non-recursive
class of functions. While using heuristics is simple and correct, it is
easy to construct cases that are not optimized even though they are
completely safe. These missed optimization opportunities weigh par-
ticularly heavy in cases where function items are used to encode data
structures, as doing so yields highly nested closures with non-trivial
call structures. For example, the three-element list [1, 2, 3] is
represented in Scott encoding1 by the following nested expression.

function($n1, $c1) { $c1( 1,
function($n2, $c2) { $c2( 2,
function($n3, $c3) { $c3( 3,
function ($n4, $c4) { $n4() }) }) }) }

We found that shifting the focus from the enclosing function items to
the calls in their bodies is an approach that works better in practice
than relying on heuristics to decide on the inlining of function
items. If a loop occurs while inlining functions, there must be some
function call expression that is (possibly after some intermediate
steps) inlined into itself, i.e., replaced by the body of the function
that it originated from in the source code. Therefore, such dynamic
cycles can be avoided by tagging each function call at compile
time, attaching all of the source code locations of functions it was
lexically enclosed by. These tags are then updated whenever the
expression containing the call is inlined into another function. Using
this scheme, together with other heuristics such as limits on the size
of the function body, the same inlining approach can be used for
both static and dynamic functions.

This method enables powerful abstractions with almost no
overhead because all abstracted-over expressions can be handed
into the abstracting function as function items that are then inserted
back by the inliner. For example, the following function local:lf
(left fold) iterates over a sequence $seq of items and updates an
accumulating parameter $acc that is initialized by a value $start
using the combining function $f.

declare function local:lf($seq, $start, $f) {
let $go :=
function($curr-seq, $acc, $go) {
if(empty($curr-seq)) then $acc
else $go(tail($curr-seq),

$f($acc, head($curr-seq)), $go) }
return $go($seq, $start, $go)

};

The call local:lf(1 to $n,1,function($a,$b){$a*$b}),
which calculates the factorial of $n, can be inlined to yield the
following efficient expression.

let $go :=
function($curr-seq, $acc, $go) {
if(empty($curr-seq)) then $acc
else $go(tail($curr-seq),

$acc * head($curr-seq), $go) }
return $go(1 to $n, 1, $go)

2.3 Closures
A special case of non-static functions are closures, i.e., inline
functions that contain references to non-local variables. These
expressions cannot be statically compiled to function items because
the values of the closed-over variables are not yet available. Our
XQuery compiler thus creates a CLOSURE object that gathers the
closed-over values at run-time and creates a function item.

While this structure does not seem to lend itself to inlining well at
first, we can make two observations. First, closures can be recursive

1 First appears in a set of unpublished lecture notes by Dana Scott, cited by
Curry et al. [5, p. 504].
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at run-time, but inlining them cannot lead to an infinite recursion.
On the one hand, they cannot close over themselves as XQuery does
not have recursive let expressions. On the other hand, the code for
inlining variables they could be bound to takes care not to duplicate
the costs of evaluating the closure and creating the function item.
This also guarantees that a closure can never end up as argument
to an inlinable call to itself. Second, if a CLOSURE expression is
inlined as callee into a function call expression, it can thus be inlined
directly without additional checks, because all parameters as well
as closed-over variables must be in scope.

If, however, the values of all closed-over variables become
known at one point during compilation, i.e., if the closure con-
tains only mappings from local variables to values, it can then be
rewritten into a function item at compile time. This observation
can be generalized by interpreting the closed-over variables as a
set of let bindings that create a mapping from variables in the
outer scope to those in the closure’s function body. The closure
function($j) { $i * $j } would thus be interpreted as fol-
lows.

let $i′ := $i return︸ ︷︷ ︸
closed-over variables

function($j) { $i′ * $j }︸ ︷︷ ︸
resulting function item

With this model it becomes easier to reason about the treatment
of non-local variables. While the bindings in a closure initially
always have a reference to a variable from the outer scope on the
right-hand side, variable inlining may replace it with an arbitrarily
complex expression if it determines that the transformation is
beneficial. A binding may be moved into the function item’s body
if it does not depend on the outer scope any more. This is trivially
true for fully evaluated values, but may also hold for other more
complex and expensive expressions. Expressions in the non-local
bindings are evaluated once when the function item is created. If
a binding is moved into the function, it is evaluated each time the
function is called. It is therefore not advantageous to move expensive
expressions if the function item is called more than once. As soon as
there are no non-local bindings left in the closure, it can be compiled
to a function item at compile time.

Apart from values, which can always be moved into the function,
another important case to optimize is that of nested closures. When
an outer closure closes over another inner one, any references to
the outer scope in this expression must be in the inner closure’s
closed-over expressions. These are evaluated when the inner closure
is, which in turn is exactly once per evaluation of the outer closure
into a function item. It is therefore safe to bind those closed-over
expressions to temporary variables in the outer closure’s bindings
and then copy the result over into the inner one. This can be seen in
the following query. Colored boxes highlight the nested closures.

for $i in 1 to 10
let $f :=
let $g := let $i′ := $i return

function($y) { $i′ * $y } return
function($x) { $g($x * $x) }

return $f($f(42))

Since $g closes over $i, it cannot be compiled to an item. Therefore,
$f has to close over $g and none of the functions can be inlined.
However, using the transformation discussed above, we can intro-
duce a new variable $i′′ to capture $i inside $f.

for $i in 1 to 10
let $f :=
let $i′′ := $i,

$g := let $i′ := $i′′ return
function($y) { $i′ * $y } return

function($x) { $g($x * $x) }
return $f($f(42))

Now $g does not depend on $i and can thus be inlined into $f. It
can then be inlined into its call and there is only one closure left.

for $i in 1 to 10
let $f :=
let $i′′ := $i return function($x) {
let $y := $x * $x return $i′′ * $y

}
return $f($f(42))

Chains of closures as described here occur most often when higher-
order functions are used to abstract out programming patterns into
reusable library functions. The parts of the code that differ between
uses are passed in as function items and called by the library code.
In the application code those often have to be closures in order to
be able to use data from the surrounding scope. When multiple of
these layers of abstraction are built on top of each other, this directly
leads to closures capturing each other and, thus, nesting that needs
to be resolved.

3. Experimental Evaluation
The inlining techniques presented in the previous section were
implemented in the open-source native XML database BaseX2 and
have been in productive use since version 7.8. In this section, we will
use this implementation to characterize the performance benefits that
can be obtained from function inlining in XQuery 3.0. In particular,
we study the reduction of execution time both in a synthetic and a
practical setting. Finally, we analyze the effect that an optimizing
compiler can achieve in combination with a query optimizer. All
results reported in this section have been measured on a personal
computer (Intel i7-3740QM CPU, 8 GB RAM) using the Oracle
64-bit Java VM 1.8.0_b20-b26 on a 64-bit Microsoft Windows
Professional 8.1. Running times are averaged over 10 runs for the
queries in Section 3.1 and 200 runs for the others.

3.1 Newton’s Method for Square Roots
In order to understand the performance benefits that can potentially
be achieved, we study XQuery 3.0 function inlining in a synthetic
setting. As a program, we chose an implementation of Newton’s
method to calculate square roots of floating-point numbers. Since the
code is written using three levels of abstraction, each implemented as
a static higher-order function that takes a function item as argument,
it lends itself to aggressive inlining of dynamic functions and
closures. Applying all described optimizations to this query, the
resulting code is reduced to a single recursive function.

We measured the execution times of two versions of this query,
the original one and one optimized using the approach presented
in this paper, in four different system configurations. We compare
versions 9.5 and 9.6 of the optimized Saxon Enterprise Edition
to BaseX 8.0 with the unnesting of nested closures activated and
deactivated. Figure 1 presents an overview of the results. Since we
do not have access to Saxon’s optimizer framework, we measured
optimized execution times using the query string output by BaseX’s
optimizer. While the results between the two Saxon versions do
not change significantly, the optimized query is faster by almost a
factor of four. In BaseX, the query also runs faster with optimization
activated, but the difference is more pronounced without closure
flattening.

3.2 FunctX Library
For an initial quantification of the performance benefits that can be
expected in a practical setting, we turn to FunctX3, a popular and

2 http://www.basex.org
3 http://www.xqueryfunctions.com
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Figure 1. Performance comparison of the square root function.

widely-used XQuery library of utility functions. The XQuery code
below uses the functx:date() and functx:days-in-month()
functions to compute the total number of days of all years from the
year 1 to the year 2015.

fn:sum(
for $year in 1 to 2015
for $month in 1 to 12
let $first := functx:date($year, $month, 1)
return functx:days-in-month($first)

)

Executing this XQuery program without function inlining takes on
average 92.5 ms, whereas optimizing it as described in this paper
yields a 41% reduction of the average runtime to 54.5 ms. Clearly,
this is a very initial result and a more comprehensive study would be
required to fully characterize all performance benefits. Nevertheless,
even this first result can help to contextualize the results obtained in
the synthetic setting.

3.3 Interplay of Compiler and Query Optimizer
In order to demonstrate the combined effect of optimizing compiler
and query optimizer, we use the following query that computes the
relative population of each country in the CIA World Factbook4

w.r.t. to the population of India.

declare function local:f($w, $c) {
let $in := $w/country[@name="India"]/@population
return ($in, $c/@population div $in)

};
let $world := doc(’factbook’)/mondial
for $country in $world/country
return local:f($world, $country)

In this form, the query suffers from two inefficiencies. First, there
is the overhead of repeated function calls to local:f($w, $c).
Second, the query optimizer is not able to utilize value indexes, since
all attribute accesses are done inside the function body, relative to an
element that is unknown at compile time. Applying the techniques
presented in this paper, the above query is rewritten to the following,
BaseX-specific, representation.

let $in := db:attribute("factbook", "India")
/self::name/parent::country/@population

for $country in doc("factbook")/mondial/country
return ($in, $country/@population div $in)

Now that the compiler has completely inlined the function, the
query optimizer can again deal with a single FLWOR expression
and choose an index-based access plan. This combined optimization
leads to a performance improvement of several orders of magnitude.
Whereas the unoptimized query takes on average 199.3 ms to
complete, the optimized has an average execution time of 4.1 ms.

4 http://files.basex.org/xml/factbook.xml

4. Related Work
Inlining as an optimization technique is well studied in a wide
range of application domains. Most relevant to XQuery is again the
functional programming community, since the stronger guarantees
of this class of languages allow for more aggressive optimization.
Peyton Jones and Marlow describe their approach taken in the
GHC Haskell compiler [10] in great detail. The challenges that a
more weakly and dynamically typed language (like XQuery) poses
can be studied in Baker’s work on inlining recursive functions in
Scheme [2]. An even more general framework for inlining on lower-
level intermediate code is discussed in a paper by Ayers et al. [1].
Since XQuery 3.0 itself is a rather young language, its current
implementations are not yet optimized to their full potential, and we
know of no publications documenting their optimization strategies.
An approach for XQuery 1.0 is shown by Grinev and Lizorkin [6]
for the Sedna processor.

5. Conclusion
We argue for a combination of optimizing compiler and query opti-
mization techniques in order to efficiently execute complex XQuery
programs. In this paper, we revisited the well-known technique of
function inlining and showed how it can be applied in the case of
XQuery 3.0. Our performance evaluation demonstrated the signif-
icant benefits that can be obtained from function inlining alone,
but also in concert with traditional query optimization techniques.
The work presented in this paper is a first step towards hybrid
optimization techniques, which we believe can also benefit other
computationally complete query languages, such as PL/SQL.
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